The Poincare Polynomial of an Arrangement with the Trio Separation Property

Kelly Pearson* and Tan Zhang
Professor of Mathematics and Statistics, Murray State University, United States.

Article Details

Article Type: Research Article
Received date: $15^{\text {th }}$ June, 2023
Accepted date: $08^{\text {th }}$ July, 2023
Published date: $12^{\text {th }}$ July, 2023
*Corresponding Author: Kelly Pearson, Professor of Mathematics and Statistics, Murray State University, United States.
Citation: Pearson, K., \& Zhang, T., (2023). The Poincare Polynomial of an Arrangement with the Trio Separation Property. Contrib Pure Appl Math, l(1): 101. doi: https://doi.org/10.33790/cpam1100101.
Copyright: ©2023, This is an open-access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

An arrangement of hyperplanes with a modular element in its intersection lattice has a Poincarè polynomial which factors; this was proven by Stanley in the setting of geometric lattices. This note proves a factorization in the setting of hyperplane arrangements under two conditions which imply a modular element. Two well known reflection arrangements serve as motivation and their Poincarè polynomials are computed using the main theorem of this note.

Background and Notation

Definition 1.1. Let \mathbb{F} be a field. A hyperplane is an affine subspace of codimension one in \mathbb{F}^{ℓ}. A hyperplane arrangement in \mathbb{F}^{ℓ} is a finite collection of hyperplanes in \mathbb{F}^{ℓ}, written $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$. The cardinality of \mathcal{A} is n and is denoted $|\mathcal{A}|$.

Denition 1.2. Let \mathcal{A} be an arrangement of hyperplanes in $V=\mathbb{F}^{\ell}$. We define the partially ordered set $L(\mathcal{A})$ with objects given by $\bigcap_{H \in B} H$ for $B \subseteq \mathcal{A}$ and $\cap_{H \in B} H \neq \emptyset$; order the objects of $L(\mathcal{A})$ opposite to inclusion. Notice $\emptyset \subseteq \mathcal{A}$ gives $V \in L(\mathcal{A})$ with $V \leq X$ for all $X \in L(\mathcal{A})$. For $X \in L(\mathcal{A})$, We define $\operatorname{rank}(X):=\operatorname{codim} X$. We define $\operatorname{rank}(\mathcal{A}):=\max _{X \in L(\mathcal{A})} \operatorname{rank}(X)$.

Definition 1.3. Let \mathcal{A} be an arrangement. If $B \subseteq \mathcal{A}$ is a subset, then B is called a subarrangement. For $X \in L(\mathcal{A})$ we define a subarrangement A_{X} of \mathcal{A} by $A_{X}:=\{H \in \mathcal{A}: X \subset H\}$. Define an arrangement \mathcal{A}^{X} in X via $\mathcal{A}^{X}=\left\{X \cap H: H \in \mathcal{A} \backslash \mathcal{A}_{X} \quad\right.$ and $X \cap H \neq \emptyset\}$.

Definition 1.4. Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a hyperplane arrangement in $V=\mathbb{F}^{\ell}$ for some field \mathbb{F}. We fix an order on \mathcal{A}; that is, for hyperplanes H_{i} and H_{j} in \mathcal{A}, we have $\mathrm{H}_{\mathrm{i}}<\mathrm{H}_{\mathrm{j}}$ if and only if $\mathrm{i}<\mathrm{j}$.

Let κ be a commutative ring. Let E_{1} be the linear space over κ on n generators. Let $\mathrm{E}(\mathcal{A}):=\Lambda\left(\mathrm{E}_{1}\right)$ be the exterior algebra on E_{1} . We have $E(\mathcal{A})=\oplus_{p \geq 0} E_{p}$ is a graded algebra over κ. The standard κ-basis for E_{p} is given by
$\left\{e_{i_{1}} \ldots e_{i_{p}}: 1 \leq i_{1}<\ldots<i_{p} \leq p\right\}$.

Any ordered subset $S=\left\{H_{i_{1}}, \ldots, H_{i_{p}}\right\}$ of \mathcal{A} corresponds to an element $e_{S}:=e_{i_{1}} \ldots e_{i_{p}}$ in $E(\mathcal{A})$.
Definition 1.5. We define the map $\partial: E(\mathcal{A}) \rightarrow E(\mathcal{A})$ via the usual differential. That is,

$$
\begin{aligned}
& \partial(1):=0, \\
& \partial\left(e_{i}\right):=1, \text { and for } p \geq 2, \\
& \partial\left(e_{i_{1}} \ldots e_{i_{p}}\right):=\sum_{k=1}^{p}(-1)^{k-1} e_{i_{1}} \ldots \hat{e}_{i_{k}} \ldots e_{i_{p}}
\end{aligned}
$$

Definition 1.6. We define $I(\mathcal{A})$ to be the ideal of $E(\mathcal{A})$ which is generated by
$\left\{\partial\left(\mathrm{e}_{\mathrm{s}}\right): S\right.$ is dependent $\} \cup\left\{\mathrm{e}_{\mathrm{s}}: \cap \mathrm{S}=\varnothing\right\}$.
Definition 1.7. The Orlik-Solomon algebra, $A(\mathcal{A})$, is defined as $A(A): E(A) / I(A)$.

Let $\pi: E(\mathcal{A}) \rightarrow A(\mathcal{A})$ be the canonical projection. We write a_{s} to represent the image of e_{S} under π.

We define the Orlik-Solomon algebra and a linear basis for this algebra, referred to as the broken circuit basis; see Chapter 3 in [3].
Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a hyperplane arrangement in $V=\mathbb{F}^{\ell}$ for some field \mathbb{F}. For each $H_{i} \in \mathcal{A}$, we fix an affine functional α_{i} with Ker $\alpha_{i}=\mathrm{H}_{\mathrm{i}}$. We fix an order on \mathcal{A}; that is, for hyperplanes H_{i} and H_{j} in \mathcal{A}, we have $\mathrm{H}_{\mathrm{i}}<\mathrm{H}_{\mathrm{j}}$ if and only if $\mathrm{i}<\mathrm{j}$. Let $I(\mathcal{A})$ be the ideal of $E(\mathcal{A})$ as defined previously, and let $A(\mathcal{A}):=E(\mathcal{A}) / I(\mathcal{A})$ be the Orlik-Solomon algebra. Let $\pi: E(\mathcal{A}) \rightarrow A(\mathcal{A})$ be the canonical projection. We write a_{s} to represent the image of e_{s} under π.

We demonstrate that $A(\mathcal{A})$ is a free graded κ-module by defining the broken circuit basis for $A(\mathcal{A})$. By Theorem 1.9 to follow, this is indeed a basis for $A(\mathcal{A})$.

Definition 1.8. Let $S=\left\{H_{i_{1}}, \ldots, H_{i_{p}}\right\}$ be an ordered subset of A with $\mathrm{i}_{1}<\cdots<\mathrm{i}_{\mathrm{p}}$. We say a_{s} is basic in $A_{p}(\mathcal{A})$ if

1. S is independent, and
2. For any $1 \leq \mathrm{k} \leq \mathrm{p}$, there does not exist a hyperplane $H \in \mathcal{A}$ so that $H<H_{i_{k}}$ with $\left\{H, H_{i_{k}}, H_{i_{k+1}}, \ldots, H_{i_{p}}\right\}$ dependent.

The set of $\left\{\mathrm{a}_{\mathrm{s}}\right\}$ with S as above form the broken circuit basis for $A(\mathcal{A})$, whose name is justified by the following theorem.
Theorem 1.9. As a κ-module, $A(\mathcal{A})$ is a free, graded module. The broken circuit basis forms a basis for $A(\mathcal{A})$.
Proof. This is proven in Theorem 3.55 in [3].
Example 1.10. Let $\operatorname{dim} V=\ell$, and let \mathcal{A} be the braid arrangement in V given by

$$
Q(\mathcal{A})=\prod_{1 \leq i<j \leq \ell}\left(x_{i}-x_{j}\right)
$$

Let H_{ij} correspond to the hyperplane given by $\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}=0$. Order the hyperplanes lexicographically; that is, $\mathrm{H}_{\mathrm{ij}}<\mathrm{H}_{\mathrm{mn}}$ if either $\mathrm{i}<\mathrm{m}$ or $\mathrm{i}=\mathrm{m}$ and $\mathrm{j}<\mathrm{n}$. We will write $\mathrm{a}_{\mathrm{H}_{\mathrm{ij}}}=\mathrm{a}_{\mathrm{ij}}$ in $A_{\mathrm{l}}(\mathcal{A})$.

In order to compute $\operatorname{dim} A_{p}(\mathcal{A})$, we need to describe the elements of the broken circuit basis in $A_{p}(\mathcal{A})$. Let $a=a_{i_{1} j_{1}} a_{i_{2} j_{p}} \ldots a_{i_{p} j_{p}}$ be an element of the broken circuit basis in $A_{p}(\mathcal{A})$. By definition of the hyperplanes, we have $i_{k}<j_{k}$.

We first verify all the second indices of a are distinct. Suppose $\mathrm{j} 1=\mathrm{j} 2$. Without loss of generality, we may assume $i_{1}<i_{2}$. Then $\left\{H_{i_{1} j_{1}}, H_{i_{2}}, j_{2}, H_{j_{1}}, j_{2}\right\}$ is dependent with $H_{i_{1} i_{2}}$ being minimal in the set; this contradicts the assumption α is in the broken circuit basis. In a similar fashion, we have and will assume $j_{1}<j_{2}<\ldots<j_{p}$.
We now verify the first indices have no restriction other than $\mathrm{i}_{\mathrm{k}}<\mathrm{j}_{\mathrm{k}}$. Suppose $i_{1}=i_{2}$, then $\left\{H_{i_{1} j_{1}}, H_{i_{2}, j_{2}}, H_{j_{1}}, j_{2}\right\}$ is dependent; but the minimal element of this set is $H_{i_{1} j_{1}}$. Notice $H_{i_{1} j_{1}}, H_{i_{2}},{ }_{j_{2}}, H_{j_{1}}, j_{2}$ is not basic as there are two of the second indices equal and this situation was eliminated. Therefore, a is still an element of the broken circuit basis as it does not contain the factor $a_{j_{1} j_{2}}$. Hence, there are no restrictions on i_{k} other than $j_{k}>i_{k}$.
It is now just a matter of counting the possibilities we have for
$\left\{i_{1} j_{1}, \ldots, i_{p} j_{p}\right\}$ with the restrictions $j_{1}<j_{2}<\ldots<j_{p}$ and $i_{k}<j_{k}$ for $\mathrm{k}=1, \ldots, \mathrm{p}$.

Fix $j_{1}, \ldots j_{p}$. There are $\ell-j_{k}$ choices for i_{k} for each $\mathrm{k}=1, \ldots, \mathrm{p}$. Thus,

$$
\begin{aligned}
& \operatorname{dim} A_{p}(\mathcal{A})=\sum_{i_{p}=1+i_{p}-1}^{\ell-1} \ldots \sum_{i_{2}=1+i_{1}}^{\ell-p+1} \sum_{i_{1}=1}^{\ell-p}\left(\prod_{k=1}^{p}\left(\ell-j_{k}\right)\right) \\
& =\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{p} \leq \ell-1} j_{1} j_{2} . . j_{p} .
\end{aligned}
$$

As usual, if $p=0$, then this sum is taken to be 1 .
The dimension s of $A_{1}(\mathcal{A})$ and $A_{2}(\mathcal{A})$ can be easily simplified. Obviously, we have $\operatorname{dim} A_{1}(\mathcal{A})=\binom{\ell}{2}$. For the dimension of $A_{2}(\mathcal{A})$, consider minimally dependent sets of three hyperplanes. Any such set must be of the form $\left\{H_{i j}, H_{i k}, H_{j k}: i<j<k\right\}$. There are $\binom{\ell}{3}$ of these sets. Hence, $A_{2}(\mathcal{A})=\operatorname{dim} \mathrm{E}_{2}-\binom{\ell}{3}$. Using the fact, $n=\binom{\ell}{2}$ we arrive at $\operatorname{dim} A_{2}(\mathcal{A})=\frac{\ell(\ell-1)(\ell-2)(3 \ell-1)}{24}$.
Denition 1.11. Let \mathcal{A} be an arrangement. Let $H_{0} \in \mathcal{A}$. We define the arrangements given by deletion and restriction
$\mathcal{A}^{\prime}=\left\{H: H \in \mathcal{A} \backslash H_{0}\right\}$ and
$\mathcal{A}^{\prime \prime}=\left\{H_{0} \cap H: H \in \mathcal{A}\right.$ and $\left.H \cap H_{0} \neq \varnothing\right\}$.
Denition 1.12. Let $\pi(A(\mathcal{A}), t)$ be the Poincarè polynomial of the free $\operatorname{graded} \mathcal{K}$-module $A(\mathcal{A})$; that is, $\pi(A(\mathcal{A}), t)=\sum_{p=0}^{\ell} \operatorname{rank}\left(A_{p}(\mathcal{A})\right) t^{p}$.

Theorem 1.13. Let $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}$ be a triple given by deletion and restriction. Then $\pi(A(\mathcal{A}), t)=\pi\left(A\left(\mathcal{A}^{\prime}\right), t\right)+t \pi\left(A\left(\mathcal{A}^{\prime \prime}\right), t\right)$.
Proof. This is Corollary 3.67 in [3].
We end this section by furnishing two additional definitions which are needed in the subsequent section.
Definition 1.14. An element $X \in L(\mathcal{A})$ is said to be modular if
for any $Y \in L(\mathcal{A})$ and any $Z \in L(\mathcal{A})$ with $Z \leq Y$, we have

$$
Z \vee(X \wedge Y)=(Z \vee X) \wedge Y
$$

Definition 1.15. Let \mathcal{A} be an arrangement. We say \mathcal{A} is supersolvable if $L(\mathcal{A})$ has a maximal chain of modular elements

$$
V=X_{0}<X_{1}<\ldots<X_{\ell}=\cap_{H \in \mathcal{A}} H, \text { while } \operatorname{rank}(\mathcal{A})=\ell .
$$

2. Main Theorem

Factorization of the Poincarè polynomial has been studied extensively. Stanley showed that supersolvable arrangements have Poincare polynomials that factor into linear factors [4]. A generalization of supersolvable arrangements gave a factorization into linear factors by looking at nice partitions [5]. Other generalizations of supersolvable arrangements are given in [1] and [2]. In this section, we show a factorization of the Poincarè polynomial when the arrangement has a special subarrangement which implies the existence of a modular element in $L(\mathcal{A})$.

Definition 2.1. Consider the following conditions on a nonempty subset $\mathcal{H} \subseteq \mathcal{A}$:
(A) for any $\left\{H_{i_{1}}, H_{i_{2}}\right\} \subseteq H$, there exists a unique $K \in \mathcal{A}$ with $K \notin \mathcal{H}$ and K containing $H_{i_{1}} \cap H_{i_{2}}$ and
(B) For any $\left\{K_{q_{1}}, \ldots, K_{q_{m}}\right\} \subseteq \mathcal{A} \backslash \mathcal{H}$, we have $\cap_{k=1}^{m} K_{q k}$ is contained in no hyperplanes from \mathcal{H}.
If such \mathcal{H} exists in \mathcal{A}, we say \mathcal{A} has the trio separation property under \mathcal{H}.

In the above definition, $Z=\cap_{H \in \mathcal{H}} H$ is a modular element of $L(\mathcal{A})$. See Stanley [4]. However, let \mathcal{A} be the arrangement given by the hyperplanes $\{x, y, z, x+y-z\}$ with \mathcal{H} given by $\{z\}$. Then the hyperplane given by $\{\mathrm{z}=0\}$ is a modular element but does not satisfy condition (B). Hence, modularity of $Z=\cap_{H \in \mathcal{H}} H$ does not imply that conditions (A) and (B) are satisfied.

Theorem 2.2. Suppose $\mathcal{H} \subset \mathcal{A}$ satisfies condition (A). There exists an ordering of the hyperplanes so that the broken circuit basis contains no elements $a_{\vec{v}}$ where \vec{v} contains two indices corresponding to hyperplanes in \mathcal{H}.

Proof. Order the hyperplanes so that for any $H_{i} \in \mathcal{H}$ and any $H_{k} \in \mathcal{A} \backslash \mathcal{H}$, we have $\mathrm{i}>\mathrm{k}$. Let $a_{\vec{v}}$ be a basic element of $A(\mathcal{A})$ and suppose \vec{v} contains two indices corresponding to hyperplanes in \mathcal{H}, say H_{α} and H_{β}. Since \mathcal{H} satises condition (A), there exists $H_{y} \in \mathcal{A} \backslash \mathcal{H}$ with $H_{\alpha} \cap H_{\beta} \subset H_{\gamma}$. By our choice of ordering, $\gamma<\alpha, \beta$ and hence $a_{\vec{v}}$ is not basic.

Suppose $\mathcal{H} \subseteq \mathcal{A}$ satisfies condition (A). Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2 . Since \mathcal{H} satisfies condition (A), we must have some hyperplanes containing X that are in $\mathcal{A} \backslash \mathcal{H}$. Let $X^{\prime} \in L(\mathcal{A})$ represent the intersection of the hyperplanes containing X that are in $\mathcal{A} \backslash \mathcal{H}$.
Lemma 2.3. Supposes \mathcal{A} has the trio separation property under \mathcal{H}. Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2. Fix $H_{0} \in \mathcal{H}$. Then $X^{\prime}=\left(X \cap H_{0}\right)^{\prime}$. Moreover, if $\left(X \cap H_{0}\right)^{\prime}=\left(Y \cap H_{0}\right)^{\prime}$ for any $X, Y \in L(\mathcal{A}) \backslash\left\{V, H_{0}\right\}$, then $X \cap H_{0}=Y \cap H_{0}$.

Proof. Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2 . It is obvious that $X^{\prime} \subseteq\left(X \cap H_{0}\right)^{\prime}$. Suppose there is a hyperplane $H \in \mathcal{H}$ containing X. By condition (A), $\left(X \cap H_{0}\right)$ is a hyperplane and X^{\prime} must contain at least one hyperplane, so $\left(X \cap H_{0}\right)=X^{\prime}$. Suppose all hyperplanes containing X are in $\mathcal{A} \backslash \mathcal{H}$. Then $\left(X \cap H_{0}\right)$ is precisely X^{\prime} by condition (B).
Suppose $\left(X \cap H_{0}\right)^{\prime}=\left(Y \cap H_{0}\right)^{\prime}$ for some $X, Y \in L(\mathcal{A}) \backslash\left\{V, H_{0}\right\}$ Suppose there exists $H \in \mathcal{H} \backslash\left\{H_{0}\right\}$ with H containing $X \cap H_{0}$. They by (A), $\left(H \cap H_{0}\right.$)' is a hyperplane containing $H \cap H_{0}$; hence, H contains $\left(Y \cap H_{0}\right)^{\prime} \cap H_{0}$ which contains $Y \cap H_{0}$.

Lemma 2.4. Supposes \mathcal{A} has the trio separation property under \mathcal{H}. Fix $H_{0} \in \mathcal{H}$. Then $L\left(\mathcal{A}^{H 0}\right) \cong L(\mathcal{A} \backslash \mathcal{H})$.
Proof.Let $\Phi: L\left(\mathcal{A}^{H 0}\right) \rightarrow L(\mathcal{A} \backslash \mathcal{H})$ via $\Phi\left(X \cap H_{0}\right)=\left(X \cap H_{0}\right)^{\prime}$ and $\Phi\left(H_{0}\right)=V$. To verify Φ is injective, suppose $\left(X \cap H_{0}\right)^{\prime}=\left(Y \cap H_{0}\right)^{\prime}$ for some $X, Y \in L(\mathcal{A}) \backslash\left\{V, H_{0}\right\}$. By Lemma 2.3, $X \cap H_{0}=Y \cap H_{0}$.

To verify Φ is surjective, suppose $X \in L(\mathcal{A} \backslash \mathcal{H})$. Then $\Phi\left(X \cap H_{0}\right)=\left(X \cap H_{0}\right)^{\prime}=X^{\prime}=X$.
Furthermore, it is obvious that Φ is order preserving on the lattices.
We are now ready to state and prove the following:
Theorem 2.5. Suppose \mathcal{A} has the trio separation property under \mathcal{H}. The Poincare polynomial of \mathcal{A} is computed via

$$
\pi(A(\mathcal{A}), t)=(1+|\mathcal{H}| \cdot t) \pi(A(\mathcal{A} \backslash \mathcal{H}), t) .
$$

Proof. We begin by applying Theorem 1.13 repeatedly to $\mathcal{H}=$ $\left\{\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}\right\}$. It follows that

$$
\left.\pi(A(\mathcal{A}), t)=\pi(A(\mathcal{A} \backslash \mathcal{H}), t)+\sum_{i=1}^{m} t \pi\left(A\left(\mathcal{A} \backslash\left\{H_{1}, \ldots, H_{i-1}\right\}\right\}^{H_{i}}\right), t\right) .
$$

By Lemma 2.4,

$$
\begin{aligned}
& \pi(A(\mathcal{A}), t)=\pi(A(\mathcal{A} \backslash \mathcal{H}), t)+m t \pi(A(\mathcal{A} \backslash \mathcal{H}), t) \\
& =(1+|\mathcal{H}| \cdot t) \pi(A(\mathcal{A} \backslash \mathcal{H}), t) .
\end{aligned}
$$

Hence, we have computed the Poincarè polynomial of $A(\mathcal{A})$ in terms of the Poincarè polynomial of $A(\mathcal{A} \backslash \mathcal{H})$.

3. Examples

Denition 3.1. Let \mathcal{A}_{ℓ} be the braid arrangement dened by

$$
Q\left(\mathcal{A}_{\ell}\right)=\prod_{1 \leq i<j \leq \ell}\left(x_{i}-x_{j}\right) .
$$

Lemma 3.2. Let \mathcal{A}_{ℓ} denote the braid arrangement. Let $H_{i, j}$ be the hyperplane determined by $x_{i}-x_{j}$ for $1 \leq i<j \leq \ell$. Then for any $2 \leq \beta \leq \ell$, we have:

$$
\left(\mathcal{A}_{\ell} \backslash\left\{H_{1, \ell}, \ldots, H_{\beta, \ell}\right\}\right)^{H}{ }_{\beta+1, \ell} \cong \mathcal{A}_{\ell-1} .
$$

Proof. Let $\mathcal{H}=\left\{H_{1, \ell}, \ldots, H_{\beta,\}}\right\}$. Then \mathcal{H} satises conditions (A) and (B). By Lemma 2.4, the result is immediate.

Theorem 3.3. Let A_{ℓ} denote the braid arrangement. Then

$$
\pi\left(\mathcal{A}_{\ell}\right)=(1+(\ell-1) \cdot t) \pi\left(\mathcal{A}_{\ell-1}\right) .
$$

Proof. Let $\mathcal{H}=\left\{H_{1, e}, \ldots, H_{\beta, \ell+1}\right\}$. Then \mathcal{A} has the trio separation property under \mathcal{H}. By Theorem 2.5 and Lemma 3.2, the result is immediate.
Definition 3.4. Let V be an ℓ - dimensional vector space over the finite field of q elements, \mathbb{F}_{q}. Let \mathcal{A}_{ℓ} be the central arrangement of all hyperplanes through the origin.

Lemma 3.5. Let \mathcal{A}_{ℓ} denote the arrangement defined in Definition 3.4. Let $\vec{c}=\left\{c_{1}, \ldots, c_{\ell-1}\right\}$ for $c_{i} \in \mathbb{F}_{q}$. Denote $H_{\vec{c}, \ell}$ by the hyperplane determined by $x_{\ell}+\sum_{1 \leq i \leq \ell-1} c_{i} x_{i}$. Let \mathcal{H} be the collection of hyperplanes $H_{\vec{c}, \ell}$. For any $U \subset \mathcal{H}$ with $H_{\vec{c}, \ell} \notin U$, we have

$$
\left(\mathcal{A}_{\ell} \backslash U\right)^{H_{1, \epsilon}} \cong \mathcal{A}_{\ell-1} .
$$

Proof. Since \mathcal{A} has the trio separation property under \mathcal{H}, the result is immediate by Lemma 2.4.

Theorem 3.6. Let \mathcal{A}_{ℓ} denote the arrangement of Denition 3.4. Then

$$
\pi\left(\mathcal{A}_{\ell}\right)=\left(1+q^{\ell-1} . t\right) \pi\left(\mathcal{A}_{\ell-1}\right) .
$$

Proof. Take \mathcal{H} to be the collection of hyperplanes $H_{\bar{c}, \ell}$ as dened in Lemma 3.5. By Theorem 2.5 and Lemma 3.5, the result is immediate.
Competing interest: The authors declare that they have no competing interests.

References

1. Bjorner and G.M. Ziegler, (1991). Broken circuit complexes: factorizations and generalizations, J. Comb. Theory (B). vol. 51, 96-126.
2. M. Jambu, (1990). Fiber-type arrangements and factorization properties, $A d v$. Math. vol. 80 issue 1, 121.
3. P. Orlik and H. Terao, (1991). Arrangements of Hyperplanes, Grundlehren der mathematischen Wis senschaften 300, Springer-Verlag, Berlin
4. R.P. Stanley, (1972). Supersolvable lattices, Algebra Universalis vol. 2, 197217.
5. H. Terao, (1992). Factorizations of the Orlik-Solomon algebras, Adv. Math. vol. 91 issue 1,4553.
