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Abstract
  An arrangement of hyperplanes with a modular element in its 
intersection lattice has a Poincarè polynomial which factors; this 
was proven by Stanley in the setting of geometric lattices. This note 
proves a factorization in the setting of hyperplane arrangements 
under two conditions which imply a modular element. Two well 
known reflection arrangements serve as motivation and their 
Poincarè polynomials are computed using the main theorem of this 
note.
Background and Notation
   Definition 1.1. Let   be a field. A hyperplane is an affine subspace 
of codimension one in  . A hyperplane arrangement in  is a finite 

collection of hyperplanes in  , written 1{ ,...., }nH H= . The 
cardinality of ��� is n and is denoted |���|.

   Denition 1.2. Let � be an arrangement of hyperplanes in 

V =  . We define the partially ordered set ( )L A  with objects given 
by 

H B H∈  for B ⊆ � and H B H∈∩ ≠ Ø   ; order the objects of ( )L A   
opposite to inclusion. Notice ⊆Ø A  gives ( )V L∈ �with V X≤  
for all ( )X L∈ �. For ( )X L∈ �, We define ( ) : dimrank X co X= . 
We define ( )( ) : max ( )X Lrank rank X∈= �� .
   

   Definition 1.3. Let �be an arrangement. If  B ⊆ � is a sub-
set, then B is called a subarrangement. For  ( )X L∈ � we define 
a subarrangement XA of �by : { : }XA H X H= ∈ ⊂� . Define 
an arrangement X�in X via { :X

XX H H= ∩ ∈�  �\  and 
}X H∩ ≠ Ø .

   Definition 1.4. Let 1{ ,...., }nH H=  be a hyperplane arrangement 
in V =   for some field  . We fix an order on �; that is, for 
hyperplanes Hi and Hj in �, we have Hi < Hj if and only if i < j.
   Let κ be a commutative ring. Let 1E  be the linear space over κ 
on n  generators. Let E( �) := ʌ(E1) be the exterior algebra on 1E
. We have 0( ) p pE E≥= ⊕�  is a graded algebra over κ. The standard 
κ-basis for Ep is given by
             

1 1{ ... :1 ... }
pi i pe e i i p≤ < < ≤ .  

   Any ordered subset 
1

{ ,...., }
pi iS H H= of  �corresponds to an 

element 
1

: ...
pS i ie e e=

 
in ( )E �.

   Definition 1.5. We define the map : ( ) ( )E E∂ →� �via the usual 
differential. That is,
          (1) : 0,∂ =

          ( ) : 1,ie∂ =  and for 2,p ≥

          1 1

1

1
( ... ) : ( 1) ... ˆ ...

p pk

p
k

i i i
k

i ie e ee e−

=

∂ = −∑

   Definition 1.6. We define ( )I � to be the ideal of  ( )E � which 
is generated by
                {∂(eS) : S  is dependent } 


 {eS : ∩S = ∅ }.

   Definition 1.7. The Orlik-Solomon algebra, ( )A �, is defined as

                     ( ) : ( )/ ( )A A E A I A .

   Let  : ( ) ( )E Aπ →� � be the canonical projection. We write aS to 
represent the image of eS under π.
   We define the Orlik-Solomon algebra and a linear basis for this 
algebra, referred to as the broken circuit basis; see Chapter 3 in [3].
   Let  1{ ,...., }nH H=  be a hyperplane arrangement in  V =   for 
some field  . For each iH ∈�, we fix an affine functional iα  with 
Ker iα  = Hi. We fix an order on �; that is, for hyperplanes Hi and 
Hj in �, we have Hi < Hj if and only if i < j. Let ( )I � be the ide-
al of ( )E � as defined previously, and let  ( ) : ( ) / ( )A E I=�  �be 
the Orlik-Solomon algebra. Let  : ( ) ( )E Aπ →� � be the canonical 
projection. We write aS to represent the image of eS under π.
   We demonstrate that ( )A � is a free graded κ-module by defining 
the broken circuit basis for ( )A �. By Theorem 1.9 to follow, this is 
indeed a basis for ( )A �.
   Definition 1.8. Let 

1
{ ,..., }

pi iS H H= be an ordered subset of A
with i1 < ••• < ip. We say aS is basic in  ( )pA � if 
 1. S is independent, and 
 2. For any 1 ≤  k ≤  p, there does not exist a hyperplane H ∈� so 
that 

kiH H<  with 
1

{ , , ,..., }
k k pi i iH H H H

+
 dependent.    
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   The set of {aS} with S  as above form the broken circuit basis for 

( )A �, whose name is justified by the following theorem. 

   Theorem 1.9. As a κ-module, ( )A � is a free, graded module. The 
broken circuit basis forms a basis for ( )A �. 
   Proof. This is proven in Theorem 3.55 in [3].
      Example 1.10. Let dim V =  , and let �be the braid arrangement 
in V given by

               1

( ) ( )i j
i j

Q x x
≤ < ≤

= −∏


� .

   Let Hij correspond to the hyperplane given by xi-xj = 0. Order the 
hyperplanes lexicographically; that is, Hij < Hmn if either i < m or i = m 

and j < n. We will write  
ijH ija  = a  in 1( )A �.

   In order to compute dim ( )pA �, we need to describe the elements 

of the broken circuit basis in ( )pA � . Let 
1 1 2

...
p p pi j i j i ja a a a=  be an 

element of the broken circuit basis in ( )pA �. By definition of the 
hyperplanes, we have k ki j< .

   We first verify all the second indices of a are distinct. Suppose 

j1 = j2 . Without loss of generality, we may assume 1 2i i< . Then 

1 1 2 2 1 2
{ , , , , }i j i j j jH H H is dependent with 

1 2i iH being minimal in the 

set; this contradicts the assumption α is in the broken circuit basis. In 

a similar fashion, we have and will assume 1 2 ... pj j j< < < .
   We now verify the first indices have no restriction other than ik<jk. 

Suppose 1 2i i= , then
1 1 2 2 1 2

{ , , , , }i j i j j jH H H is dependent; but the 

minimal element of this set is 
1 1i jH . Notice 

1 1 2 2 1 2
, , , ,i j i j j jH H H   

is not basic as there are two of the second indices equal and this 
situation was eliminated. Therefore, a is still an element of the broken 

circuit basis as it does not contain the factor 
1 2j ja . Hence, there are 

no restrictions on ki  other than k kj i> .
  It is now just a matter of counting the possibilities we have for 

1 1{ ,..., }p pi j i j  with the restrictions 1 2 ... pj j j< < <  and k ki j<  for 
k = 1, ..., p. 

   Fix 1,... pj j . There are kj−  choices for ik for each k = 1, ..., p. Thus,

                    
 

2 1 1

1 2

11

1 1 1 1 1

1 2
1 ... 1

dim ... ( ( ))

.. .
p p

p

pp p

p k
i i i i i k

p
j j j

A j

j j j

− + −−

= + − = + = =

≤ < < < ≤ −

−

=

∑ ∑ ∑ ∏

∑

 





(A) =

   
As usual, if p = 0, then this sum is taken to be 1.

   The dimension s of 1( )A A and 2 ( )A A  can be easily simplified.  
Obviously, we have dim 1( )

2
A  

=  
 



A . For the dimension of 

2 ( )A A ,consider minimally dependent sets of three hyperplanes. 
Any such set must be of the form { , , : }ij ik jkH H H i j k< < . There are 

3
 
 
 

 of these sets. Hence, 2 ( )A A  = dim E2- 3
 
 
 



. Using
 
 the

 
fact

 , 

2
n  
=  
 

  we arrive at dim 2
( 1)( 2)(3 1)( )

24
A − − −

=
   

A .    

   Denition 1.11. Let �be an arrangement. Let 0H ∈A . We define  
the arrangements given by deletion and restriction

   0}H H H∈ \ '={ :A A  and

  0 :H H H∩ ∈A" = { A  and  0H H∩ ≠ ∅ ⋅}

   Denition 1.12. Let ( ( ), )A tπ A  be the Poincarè polynomial of the free 

graded κ-module ( )A �; that is, ( ( ), )A tπ A  = 0
( ( )) p

pp
rank A t

=∑

A .

   Theorem 1.13. Let , ', "A A A  be a triple given by deletion and 

restriction. Then ( ( ), ) ( ( ), ) ( ( ), )A t A t t A tπ π π= +A A' A'' .
   Proof. This is Corollary 3.67 in [3].
   We end this section by furnishing two additional definitions which 
are needed in the subsequent section.

   Definition 1.14. An element ( )X L∈ A  is said to be modular if 

for any ( )Y L∈ A  and any ( )Z L∈ A with Z Y≤ , we have 
                      Z ˅ (X ˄ Y ) = (Z ˅ X) ˄ Y.
   Definition 1.15. Let �be an arrangement. We say �is 

supersolvable if ( )L A  has a maximal chain of modular elements

                     0 1 ... HV X X X H∈= < < < = ∩
 A , while ( )rank = A .

2. Main Theorem
   Factorization of the Poincarè polynomial has been studied exten-
sively. Stanley showed that supersolvable arrangements have Poin-
care polynomials that factor into linear factors [4]. A generalization 
of supersolvable arrangements gave a factorization into linear factors 
by looking at nice partitions [5]. Other generalizations of supersolv-
able arrangements are given in [1] and [2]. In this section, we show 
a factorization of the Poincarè polynomial when the arrangement has 
a special subarrangement which implies the existence of a modular 
element in ( )L A .
   Definition 2.1. Consider the following conditions on a nonempty 

subset :⊆ A  
   (A) for any

1 2
{ , }i iH H H⊆ , there exists a unique  K ∈A  with 

K ∉ and K containing 
1 2i iH H∩  and

   (B) For any
1

{ ,..., }
mq qK K ⊆ \ A , we have 

1 qk

m
K

k =
 is 

contained in no hyperplanes from  .
   If such   exists in A , we say A  has the trio separation property 
under   .

   In the above definition, HZ H∈= ∩  is a modular element of

( )L A . See Stanley [4]. However, let A  be the arrangement given 
by the hyperplanes {x, y, z, x + y − z} with  given by {z}. Then the 
hyperplane given by {z = 0} is a modular element but does not satisfy 
condition (B). Hence, modularity of HZ H∈= ∩  does not imply that 
conditions (A) and (B) are satisfied.
   Theorem 2.2. Suppose ⊂ A satisfies condition (A). There exists 
an ordering of the hyperplanes so that the broken circuit basis contains 
no elements va  where v  contains two indices corresponding to 
hyperplanes in  .
   Proof. Order the hyperplanes so that for any iH ∈  and any 

kH ∈ \ A , we have i > k. Let va  be a basic element of ( )A �

and suppose v  contains two indices corresponding to hyperplanes 
in  , say Hα and Hβ . Since  satises condition (A), there exists 

yH ∈ \ A  with H H Hα β γ∩ ⊂ . By our choice of ordering, 
,γ α β< and hence va  is not basic.   
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   Suppose  ⊆ A satisfies condition (A). Let ( )X L∈ A  have 
rank greater than or equal to 2. Since   satisfies condition (A), we 
must have some hyperplanes containing X  that are in \ A . Let  

' (X L∈ A)  represent the intersection of the hyperplanes containing 
X  that are in \ A .

   Lemma 2.3. Supposes A  has the trio separation property under 
 . Let ( )X L∈ � have rank greater than or equal to 2. Fix 0H ∈ . 
Then 0' ( ) 'X X H= ∩ . Moreover, if 0 0( ) ' ( ) 'X H Y H∩ = ∩  for any 

0, ( { , }X Y L V H∈ \A) , then 0 0X H Y H∩ = ∩ .
   Proof. Let ( )X L∈ � have rank greater than or equal to 2. It is 
obvious that 0' ( ) 'X X H⊆ ∩ . Suppose there is a hyperplane H ∈  
containing X . By condition (A), 0( )X H∩ is a hyperplane and 'X
must contain at least one hyperplane, so 

0( ) 'X H X∩ = . Suppose 
all hyperplanes containing X  are in \ A . Then 0( )X H∩  is pre-
cisely 'X  by condition (B).
   Suppose 

0 0( ) ' ( ) 'X H Y H∩ = ∩ for some 
0, ( { , }X Y L V H∈ \A)  . 

Suppose there exists 0{ }H H∈� \  with H containing 0X H∩ . They 

by (A), 0( ) 'H H∩  is a hyperplane containing 0H H∩ ; hence, H
contains 0 0( ) 'Y H H∩ ∩  which contains 0Y H∩ .   
   Lemma 2.4. Supposes A  has the trio separation property under 

 . Fix 0H ∈ . Then 0( ( )HL L≅ \ A ) A .
    Proof. Let 0: ( ( )HL LΦ → \ A ) A  via 0 0( ) ( ) 'X H X HΦ ∩ = ∩  and 

0( )H VΦ = . To verifyΦ is injective, suppose 0 0( ) ' ( ) 'X H Y H∩ = ∩  
for some 0, ( { , }X Y L V H∈ \A) . By Lemma 2.3, 0 0X H Y H∩ = ∩ .

   To verifyΦ is surjective, suppose (X L∈ \ A ) . Then 

0 0( ) ( ) ' 'X H X H X XΦ ∩ = ∩ = = .
   Furthermore, it is obvious that Φ  is order preserving on the lattices.
 We are now ready to state and prove the following:
 Theorem 2.5. Suppose A  has the trio separation property under 
 . The Poincare polynomial of  A  is computed via

                   ( ( ), ) (1 ) ( ( ), )A t t A tπ π= + ⋅A A \ .
   Proof. We begin by applying Theorem 1.13 repeatedly to   = 
{H1,...., Hm}. It follows that

    1 1
1

( ( ), ) ( ( ), ) ( ( ,..., }) ), )i

m
H

i
i

A t A t t A H H tπ π π −
=

= +∑A A A\ { \  .
    

By Lemma 2.4,

                
( ( ), ) ( ( ), ) ( ( ), )
(1 ) ( ( ), )
A t A t mt A t

t A t
π π π

π
= +

= + ⋅ ⋅

A A A

A

 

 

\ \ 

\ 
 

Hence, we have computed the Poincarè polynomial of ( )A � in 

terms of the Poincarè polynomial of ( )A \ A .
3. Examples
Denition 3.1. Let 



A  be the braid arrangement dened by 

                        
1

( ) ( )i j
i j

Q x x
≤ < ≤

= −∏



A .
   
Lemma 3.2. Let 



A  denote the braid arrangement. Let ,i jH  be the 
hyperplane determined by i jx x−  for 1 i j≤ < ≤  . Then for any 
2 β≤ ≤  ,we have:

              1,1, , 1{ ,..., })HH H ββ + −≅


   

(A A\ .                 

   Proof. Let 1, ,{ ,..., }H Hβ=
 

 . Then    satises conditions (A) 
and (B). By Lemma 2.4, the result is immediate.

   Theorem 3.3. Let A


denote the braid arrangement. Then

                          1( ) (1 ( 1) ) ( )tπ π −= + − ⋅
 

A A .
    Proof. Let 

1, , 1{ ,..., }H Hβ +=
 

 . Then A has the trio separation 
property under . By Theorem 2.5 and Lemma 3.2, the result is imme-
diate.
  Definition 3.4. Let V  be an −  dimensional vector space over the 

finite field of q elements, q . Let 


A  be the central arrangement 
of all hyperplanes through the origin.
     Lemma 3.5. Let 



A  denote the arrangement defined in Definition 

3.4. Let 1 1{ ,..., }c c c −=




 for i qc ∈ . Denote ,cH 



by the hyperplane 

determined by 1 1 i ii
x c x

≤ ≤ −
+∑





 . Let   be the collection of hyper-
planes ,cH 



. For any U ⊂   with 
,cH U∉

 ,we have 
                      

                    1,

1) cHU −≅


 

\ (A A .
 Proof. Since A  has the trio separation property under  , the result 
is immediate by Lemma 2.4.

   Theorem 3.6. Let 


A  denote the arrangement of Denition 3.4. 
Then 

                   
1

1( ) (1 . ) ( )q tπ π−
−= + ⋅

 

A A

   Proof. Take   to be the collection of hyperplanes ,cH 



 as dened
in Lemma 3.5. By Theorem 2.5 and Lemma 3.5, the result is 
immediate.
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