

Contributions to Pure and Applied Mathematics

The Poincare Polynomial of an Arrangement with the Trio Separation Property

Kelly Pearson* and Tan Zhang

Professor of Mathematics and Statistics, Murray State University, United States.

Article Details

Article Type: Research Article Received date: 15th June, 2023 Accepted date: 08th July, 2023 Published date: 12th July, 2023

*Corresponding Author: Kelly Pearson, Professor of Mathematics and Statistics, Murray State University, United States.

Citation: Pearson, K., & Zhang, T., (2023). The Poincare Polynomial of an Arrangement with the Trio Separation Property. *Contrib Pure Appl Math, 1*(1): 101. doi: https://doi.org/10.33790/cpam1100101.

Copyright: ©2023, This is an open-access article distributed under the terms of the <u>Creative Commons Attribution License</u> <u>4.0</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

An arrangement of hyperplanes with a modular element in its intersection lattice has a Poincarè polynomial which factors; this was proven by Stanley in the setting of geometric lattices. This note proves a factorization in the setting of hyperplane arrangements under two conditions which imply a modular element. Two well known reflection arrangements serve as motivation and their Poincarè polynomials are computed using the main theorem of this note.

Background and Notation

Definition 1.1. Let \mathbb{F} be a field. A hyperplane is an affine subspace of codimension one in \mathbb{F}^{ℓ} . A hyperplane arrangement in \mathbb{F}^{ℓ} is a finite collection of hyperplanes in \mathbb{F}^{ℓ} , written $\mathcal{A} = \{H_1, ..., H_n\}$. The cardinality of \mathcal{A} is n and is denoted $|\mathcal{A}|$.

Denition 1.2. Let \mathcal{A} be an arrangement of hyperplanes in $V = \mathbb{F}^{\ell}$. We define the partially ordered set $L(\mathcal{A})$ with objects given by $\bigcap_{H \in B} H$ for $B \subseteq \mathcal{A}$ and $\bigcap_{H \in B} H \neq \emptyset$; order the objects of $L(\mathcal{A})$ opposite to inclusion. Notice $\emptyset \subseteq \mathcal{A}$ gives $V \in L(\mathcal{A})$ with $V \leq X$ for all $X \in L(\mathcal{A})$. For $X \in L(\mathcal{A})$, We define $rank(X) \coloneqq co \dim X$. We define $rank(\mathcal{A}) \coloneqq \max_{X \in L(\mathcal{A})} rank(X)$.

Definition 1.3. Let \mathcal{A} be an arrangement. If $B \subseteq \mathcal{A}$ is a subset, then B is called a subarrangement. For $X \in L(\mathcal{A})$ we define a subarrangement \mathcal{A}_X of \mathcal{A} by $\mathcal{A}_X := \{H \in \mathcal{A} : X \subset H\}$. Define an arrangement \mathcal{A}^X in X via $\mathcal{A}^X = \{X \cap H : H \in \mathcal{A} \setminus \mathcal{A}_X \text{ and} X \cap H \neq \emptyset\}$.

Definition 1.4. Let $\mathcal{A} = \{H_1, ..., H_n\}$ be a hyperplane arrangement in $V = \mathbb{F}^{\ell}$ for some field \mathbb{F} . We fix an order on \mathcal{A} ; that is, for hyperplanes H_i and H_i in \mathcal{A} , we have $H_i \leq H_i$ if and only if i < j.

Let \mathbf{K} be a commutative ring. Let E_1 be the linear space over \mathbf{K} on *n* generators. Let $\mathbf{E}(\mathcal{A}) := \mathbf{\Lambda}(\mathbf{E}_1)$ be the exterior algebra on E_1 . We have $E(\mathcal{A}) = \bigoplus_{p \ge 0} E_p$ is a graded algebra over \mathbf{K} . The standard \mathbf{K} -basis for \mathbf{E}_p is given by

 $\{e_{i_1}...e_{i_p}: 1 \le i_1 < ... < i_p \le p\}$

Any ordered subset $S = \{H_{i_1}, ..., H_{i_p}\}$ of \mathcal{A} corresponds to an

element $e_{S} := e_{i_1} \dots e_{i_p}$ in $E(\mathcal{A})$.

Definition 1.5. We define the map $\partial: E(\mathcal{A}) \to E(\mathcal{A})$ via the usual differential. That is,

$$\begin{aligned} &\hat{\partial}(1) \coloneqq 0, \\ &\hat{\partial}(e_i) \coloneqq 1, \text{ and for } p \ge 2, \\ &\hat{\partial}(e_{i_1} \dots e_{i_p}) \coloneqq \sum_{k=1}^p (-1)^{k-1} e_{i_1} \dots e_{i_k}^* \dots e_i \end{aligned}$$

Definition 1.6. We define $I(\mathcal{A})$ to be the ideal of $E(\mathcal{A})$ which is generated by

 $\{\partial(\mathbf{e}_{\mathbf{S}}): S \text{ is dependent }\} \cup \{\mathbf{e}_{\mathbf{S}}: \cap \mathbf{S} = \emptyset\}.$

Definition 1.7. The Orlik-Solomon algebra, A(A), is defined as A(A): E(A)/I(A).

Let $\pi: E(\mathcal{A}) \to A(\mathcal{A})$ be the canonical projection. We write a_s to represent the image of e_s under π .

We define the Orlik-Solomon algebra and a linear basis for this algebra, referred to as the broken circuit basis; see Chapter 3 in [3].

Let $\mathcal{A} = \{H_1, ..., H_n\}$ be a hyperplane arrangement in $V = \mathbb{F}^\ell$ for some field \mathbb{F} . For each $H_i \in \mathcal{A}$, we fix an affine functional α_i with Ker $\alpha_i = H_i$. We fix an order on \mathcal{A} ; that is, for hyperplanes H_i and H_j in \mathcal{A} , we have $H_i < H_j$ if and only if i < j. Let $I(\mathcal{A})$ be the ideal of $E(\mathcal{A})$ as defined previously, and let $A(\mathcal{A}) := E(\mathcal{A}) / I(\mathcal{A})$ be the Orlik-Solomon algebra. Let $\pi : E(\mathcal{A}) \to A(\mathcal{A})$ be the canonical projection. We write a_s to represent the image of e_s under π .

We demonstrate that A(A) is a free graded κ -module by defining the broken circuit basis for A(A). By Theorem 1.9 to follow, this is indeed a basis for A(A).

Definition 1.8. Let $S = \{H_{i_1}, ..., H_{i_p}\}$ be an ordered subset of A with $i_1 < \cdots < i_p$. We say a_s is basic in $A_p(A)$ if

1. S is independent, and

2. For any $1 \le k \le p$, there does not exist a hyperplane $H \in \mathcal{A}$ so that $H < H_{i_k}$ with $\{H, H_{i_k}, H_{i_{k+1}}, ..., H_{i_n}\}$ dependent.

The set of $\{a_s\}$ with S as above form the broken circuit basis for A(A), whose name is justified by the following theorem.

Theorem 1.9. As a κ -module, $A(\mathcal{A})$ is a free, graded module. The broken circuit basis forms a basis for $A(\mathcal{A})$.

Proof. This is proven in Theorem 3.55 in [3].

Example 1.10. Let dim $V = \ell$, and let \mathcal{A} be the braid arrangement in V given by

$$Q(\mathcal{A}) = \prod_{1 \le i \le j \le \ell} (x_i - x_j)$$

Let H_{ij} correspond to the hyperplane given by $x_i \cdot x_j = 0$. Order the hyperplanes lexicographically; that is, $H_{ij} < H_{mn}$ if either i < m or i = m and j < n. We will write $a_{H_{ii}} = a_{ij}$ in $A_1(\mathcal{A})$.

In order to compute dim $A_p(\mathcal{A})$, we need to describe the elements of the broken circuit basis in $A_p(\mathcal{A})$. Let $a = a_{i_1 j_1} a_{i_2 j_p} \dots a_{i_p j_p}$ be an element of the broken circuit basis in $A_p(\mathcal{A})$. By definition of the hyperplanes, we have $i_k < j_k$.

We first verify all the second indices of a are distinct. Suppose j1 = j2. Without loss of generality, we may assume $i_1 < i_2$. Then $\{H_{i_1j_1}, H_{i_2}, j_2, H_{j_1}, j_2\}$ is dependent with $H_{i_1i_2}$ being minimal in the set; this contradicts the assumption α is in the broken circuit basis. In a similar fashion, we have and will assume $j_1 < j_2 < ... < j_p$.

We now verify the first indices have no restriction other than $i_k < j_k$. Suppose $i_1 = i_2$, then $\{H_{i_1j_1}, H_{i_2,j_2}, H_{j_1,j_2}\}$ is dependent; but the minimal element of this set is $H_{i_1j_1}$. Notice $H_{i_1j_1}, H_{i_2,j_2}, H_{j_1,j_2}$ is not basic as there are two of the second indices equal and this situation was eliminated. Therefore, a is still an element of the broken

circuit basis as it does not contain the factor $a_{j_1j_2}$. Hence, there are no restrictions on i_k other than $j_k > i_k$.

It is now just a matter of counting the possibilities we have for

 $\{i_1 j_1, ..., i_p j_p\}$ with the restrictions $j_1 < j_2 < ... < j_p$ and $i_k < j_k$ for k = 1, ..., p.

Fix $j_1,...,j_p$. There are $\ell - j_k$ choices for i_k for each k = 1, ..., p. Thus,

$$\dim A_p(\mathcal{A}) = \sum_{\substack{i_p = 1 + i_p - 1 \\ 1 \le j_1 \le j_2 \le \dots \le j_p \le \ell - 1}}^{\ell - 1} \dots \sum_{\substack{i_2 = 1 + i_1 \\ i_2 = 1 \le j_1 \le j_2 \le \dots \le j_p \le \ell - 1}}^{\ell - p} (\prod_{k=1}^p (\ell - j_k))$$

As usual, if p = 0, then this sum is taken to be 1.

The dimension s of $A_1(\mathcal{A})$ and $A_2(\mathcal{A})$ can be easily simplified. Obviously, we have dim $A_1(\mathcal{A}) = \binom{\ell}{2}$. For the dimension of $A_2(\mathcal{A})$, consider minimally dependent sets of three hyperplanes. Any such set must be of the form $\{H_{ij}, H_{ik}, H_{jk} : i < j < k\}$. There are $\binom{\ell}{3}$ of these sets. Hence, $A_2(\mathcal{A}) = \dim \mathbb{E}_2 - \binom{\ell}{3}$. Using the fact, $n = \binom{\ell}{2}$ we arrive at dim $A_2(\mathcal{A}) = \frac{\ell(\ell-1)(\ell-2)(3\ell-1)}{24}$.

Denition 1.11. Let \mathcal{A} be an arrangement. Let $H_0 \in \mathcal{A}$. We define the arrangements given by deletion and restriction

 $\mathcal{A}' = \{H : H \in \mathcal{A} \setminus H_0\}$ and

 $\mathcal{A}'' = \{H_0 \cap H : H \in \mathcal{A} \text{ and } H \cap H_0 \neq \emptyset\}.$

Denition 1.12. Let $\pi(A(\mathcal{A}),t)$ be the Poincarè polynomial of the free graded **K**-module $A(\mathcal{A})$; that is, $\pi(A(\mathcal{A}),t) = \sum_{p=0}^{\ell} rank(A_p(\mathcal{A}))t^p$.

Theorem 1.13. Let $\mathcal{A}, \mathcal{A}', \mathcal{A}''$ be a triple given by deletion and

restriction. Then $\pi(A(\mathcal{A}),t) = \pi(A(\mathcal{A}'),t) + t\pi(A(\mathcal{A}''),t)$.

Proof. This is Corollary 3.67 in [3].

We end this section by furnishing two additional definitions which are needed in the subsequent section.

```
Definition 1.14. An element X \in L(\mathcal{A}) is said to be modular if
```

for any $Y \in L(\mathcal{A})$ and any $Z \in L(\mathcal{A})$ with $Z \leq Y$, we have $Z \lor (X \land Y) = (Z \lor X) \land Y.$

Definition 1.15. Let \mathcal{A} be an arrangement. We say \mathcal{A} is

supersolvable if L(A) has a maximal chain of modular elements

 $V = X_0 < X_1 < \dots < X_\ell = \bigcap_{H \in \mathcal{A}} H$, while $rank(\mathcal{A}) = \ell$.

2. Main Theorem

Factorization of the Poincarè polynomial has been studied extensively. Stanley showed that supersolvable arrangements have Poincare polynomials that factor into linear factors [4]. A generalization of supersolvable arrangements gave a factorization into linear factors by looking at nice partitions [5]. Other generalizations of supersolvable arrangements are given in [1] and [2]. In this section, we show a factorization of the Poincarè polynomial when the arrangement has a special subarrangement which implies the existence of a modular element in L(A).

Definition 2.1. Consider the following conditions on a nonempty subset $\mathcal{H} \subseteq \mathcal{A}$:

(A) for any $\{H_{i_1}, H_{i_2}\} \subseteq H$, there exists a unique $K \in \mathcal{A}$ with $K \notin \mathcal{H}$ and K containing $H_{i_1} \cap H_{i_2}$ and

(B) For any $\{K_{q_1}, ..., K_{q_m}\} \subseteq \mathcal{A} \setminus \mathcal{H}$, we have $\bigcap_{k=1}^m K_{q_k}$ is contained in no hyperplanes from \mathcal{H} .

If such \mathcal{H} exists in \mathcal{A} , we say \mathcal{A} has the trio separation property under \mathcal{H} .

In the above definition, $Z = \bigcap_{H \in \mathcal{H}} H$ is a modular element of $L(\mathcal{A})$. See Stanley [4]. However, let \mathcal{A} be the arrangement given by the hyperplanes $\{x, y, z, x + y - z\}$ with \mathcal{H} given by $\{z\}$. Then the hyperplane given by $\{z = 0\}$ is a modular element but does not satisfy condition (B). Hence, modularity of $Z = \bigcap_{H \in \mathcal{H}} H$ does not imply that conditions (A) and (B) are satisfied.

Theorem 2.2. Suppose $\mathcal{H} \subset \mathcal{A}$ satisfies condition (A). There exists an ordering of the hyperplanes so that the broken circuit basis contains no elements $a_{\vec{v}}$ where \vec{v} contains two indices corresponding to hyperplanes in \mathcal{H} .

Proof. Order the hyperplanes so that for any $H_i \in \mathcal{H}$ and any $H_k \in \mathcal{A} \setminus \mathcal{H}$, we have i > k. Let $a_{\vec{v}}$ be a basic element of $\mathcal{A}(\mathcal{A})$ and suppose \vec{v} contains two indices corresponding to hyperplanes in \mathcal{H} , say H_{α} and H_{β} . Since \mathcal{H} satises condition (A), there exists $H_y \in \mathcal{A} \setminus \mathcal{H}$ with $H_{\alpha} \cap H_{\beta} \subset H_{\gamma}$. By our choice of ordering, $\gamma < \alpha, \beta$ and hence $a_{\vec{v}}$ is not basic.

Suppose $\mathcal{H} \subseteq \mathcal{A}$ satisfies condition (A). Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2. Since \mathcal{H} satisfies condition (A), we must have some hyperplanes containing X that are in $\mathcal{A} \setminus \mathcal{H}$. Let $X' \in L(\mathcal{A})$ represent the intersection of the hyperplanes containing X that are in $\mathcal{A} \setminus \mathcal{H}$.

Lemma 2.3. Supposes \mathcal{A} has the trio separation property under \mathcal{H} . Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2. Fix $H_0 \in \mathcal{H}$. Then $X' = (X \cap H_0)'$. Moreover, if $(X \cap H_0)' = (Y \cap H_0)'$ for any $X, Y \in L(\mathcal{A}) \setminus \{V, H_0\}$, then $X \cap H_0 = Y \cap H_0$.

Proof. Let $X \in L(\mathcal{A})$ have rank greater than or equal to 2. It is obvious that $X' \subseteq (X \cap H_0)'$. Suppose there is a hyperplane $H \in \mathcal{H}$ containing X. By condition (A), $(X \cap H_0)$ is a hyperplane and X' must contain at least one hyperplane, so $(X \cap H_0) = X'$. Suppose all hyperplanes containing X are in $\mathcal{A} \setminus \mathcal{H}$. Then $(X \cap H_0)$ is precisely X' by condition (B).

Suppose $(X \cap H_0)' = (Y \cap H_0)'$ for some $X, Y \in L(\mathcal{A}) \setminus \{V, H_0\}$. Suppose there exists $H \in \mathcal{H} \setminus \{H_0\}$ with H containing $X \cap H_0$. They by (A), $(H \cap H_0)'$ is a hyperplane containing $H \cap H_0$; hence, H contains $(Y \cap H_0)' \cap H_0$ which contains $Y \cap H_0$.

Lemma 2.4. Supposes \mathcal{A} has the trio separation property under

 $\begin{array}{l} \mathcal{H} . \mbox{Fix } H_0 \in \mathcal{H} . \mbox{Then } L(\mathcal{A}^{H0}) \cong L(\mathcal{A} \setminus \mathcal{H}) \, . \\ \mbox{Proof.Let } \Phi : L(\mathcal{A}^{H0}) \rightarrow L(\mathcal{A} \setminus \mathcal{H}) \mbox{ via } \Phi(X \cap H_0) = (X \cap H_0)' \mbox{ and } \\ \Phi(H_0) = V \, . \mbox{ To verify } \Phi \mbox{ is injective, suppose } (X \cap H_0)' = (Y \cap H_0)' \mbox{ for some } X, Y \in L(\mathcal{A}) \setminus \{V, H_0\} \, . \mbox{ By Lemma 2.3, } X \cap H_0 = Y \cap H_0 \, . \end{array}$

To verify Φ is surjective, suppose $X \in L(\mathcal{A} \setminus \mathcal{H})$. Then $\Phi(X \cap H_0) = (X \cap H_0)' = X' = X$.

Furthermore, it is obvious that Φ is order preserving on the lattices. We are now ready to state and prove the following:

Theorem 2.5. Suppose \mathcal{A} has the trio separation property under \mathcal{H} . The Poincare polynomial of \mathcal{A} is computed via

 $\pi(A(\mathcal{A}),t) = (1+|\mathcal{H}|\cdot t)\pi(A(\mathcal{A}\setminus\mathcal{H}),t).$

Proof. We begin by applying Theorem 1.13 repeatedly to $\mathcal{H} = \{H_1, \dots, H_m\}$. It follows that

$$\pi(A(\mathcal{A}),t) = \pi(A(\mathcal{A} \setminus \mathcal{H}),t) + \sum_{i=1}^{m} t \pi(A(\mathcal{A} \setminus \{H_1,...,H_{i-1}\})^{H_i}),t) .$$

By Lemma 2.4,

$$\begin{aligned} \pi(A(\mathcal{A}),t) &= \pi(A(\mathcal{A} \setminus \mathcal{H}),t) + mt\pi(A(\mathcal{A} \setminus \mathcal{H}),t) \\ &= (1 + |\mathcal{H}| \cdot t)\pi(A(\mathcal{A} \setminus \mathcal{H}),t) \cdot \end{aligned}$$

Hence, we have computed the Poincarè polynomial of $A(\mathcal{A})$ in terms of the Poincarè polynomial of $A(\mathcal{A} \setminus \mathcal{H})$.

3. Examples

Denition 3.1. Let \mathcal{A}_{ℓ} be the braid arrangement dened by

$$Q(\mathcal{A}_{\ell}) = \prod_{1 \leq i < j \leq \ell} (x_i - x_j)$$

Lemma 3.2. Let \mathcal{A}_{ℓ} denote the braid arrangement. Let $H_{i,j}$ be the hyperplane determined by $x_i - x_j$ for $1 \le i < j \le \ell$. Then for any $2 \le \beta \le \ell$ we have:

$$\left(\mathcal{A}_{\ell} \setminus \{H_{1,\ell}, ..., H_{\beta,\ell}\}\right)^{H}{}_{\beta+1,\ell} \cong \mathcal{A}_{\ell-1}$$

Contrib Pure Appl Math Volume 1. 2023. 101 **Proof.** Let $\mathcal{H} = \{H_{1,\ell}, ..., H_{\beta,\ell}\}$. Then \mathcal{H} satisfies conditions (A) and (B). By Lemma 2.4, the result is immediate.

Theorem 3.3. Let A_{ℓ} denote the braid arrangement. Then

$$\pi(\mathcal{A}_{\ell}) = (1 + (\ell - 1) \cdot t)\pi(\mathcal{A}_{\ell-1}).$$

Proof. Let $\mathcal{H} = \{H_{1,\ell}, ..., H_{\beta,\ell+1}\}$. Then \mathcal{A} has the trio separation property under \mathcal{H} . By Theorem 2.5 and Lemma 3.2, the result is immediate.

Definition 3.4. Let V be an ℓ – dimensional vector space over the finite field of q elements, \mathbb{F}_q . Let \mathcal{A}_ℓ be the central arrangement of all hyperplanes through the origin.

Lemma 3.5. Let \mathcal{A}_{ℓ} denote the arrangement defined in Definition 3.4. Let $\vec{c} = \{c_1, ..., c_{\ell-1}\}$ for $c_i \in \mathbb{F}_q$. Denote $H_{\vec{c},\ell}$ by the hyperplane determined by $x_{\ell} + \sum_{1 \le i \le \ell-1} c_i x_i$. Let \mathcal{H} be the collection of hyperplanes $H_{\vec{c},\ell}$. For any $U \subset \mathcal{H}$ with $H_{\vec{c},\ell} \notin U$, we have

$$\left(\mathcal{A}_{\ell} \setminus U\right)^{H_{1,\tilde{c}}} \cong \mathcal{A}_{\ell-1}$$

Proof. Since \mathcal{A} has the trio separation property under \mathcal{H} , the result is immediate by Lemma 2.4.

Theorem 3.6. Let \mathcal{A}_{ℓ} denote the arrangement of Denition 3.4. Then

$$\pi(\mathcal{A}_{\ell}) = (1 + q^{\ell-1} t) \pi(\mathcal{A}_{\ell-1}) \cdot$$

Proof. Take \mathcal{H} to be the collection of hyperplanes $H_{\tilde{c},\ell}$ as dened in Lemma 3.5. By Theorem 2.5 and Lemma 3.5, the result is immediate.

Competing interest: The authors declare that they have no competing interests.

References

- Bjorner and G.M. Ziegler, (1991). Broken circuit complexes: factorizations and generalizations, J. Comb. Theory (B). vol. 51, 96-126.
- 2. M. Jambu, (1990). Fiber-type arrangements and factorization properties, *Adv. Math.* vol. 80 issue 1, 121.
- P. Orlik and H. Terao, (1991). Arrangements of Hyperplanes, Grundlehren der mathematischen Wis senschaften 300, Springer-Verlag, Berlin
- R.P. Stanley, (1972). Supersolvable lattices, *Algebra Universalis* vol. 2, 197217.
- 5. H. Terao, (1992). Factorizations of the Orlik-Solomon algebras, *Adv. Math.* vol. 91 issue 1,4553.