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Abstract

This paper deals with the unique continuation principle of solutions for a one-
dimensional anomalous diffusion equation with multi-term time fractional derivatives.
The proof is mainly based on the Laplace transform and Theta function method. Nu-
merically, we reformulate the unique continuation as an optimization problem, and
propose an iterative thresholding algorithm to simulate it numerically. Finally, sev-
eral numerical experiments are presented to show the accuracy and efficiency of the
algorithm.

keywords: fractional diffusion equation, unique continuation principle, fractional
Theta function, Laplace transform, Phragmèn-Lindelöf principle

1 Introduction and main results

In this paper, letting T > 0, ℓ ∈ N+ and αj , qj (j = 1, 2, . . . , ℓ) be positive constants such
that 0 < αℓ < · · · < α1 < 1, we consider the following one-dimensional time-fractional
diffusion equation with multi-term time fractional derivatives

ℓ∑
j=1

qj∂
αj

t u(x, t)− ∂2
xu(x, t) = 0, (x, t) ∈ (0, 1)× (0, T ]. (1.1)
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Here by ∂
αj

t we denote the Caputo derivative (see, e.g., Podlubny [17 §2.4.1])

∂
αj

t g(t) :=
1

Γ(1− αj)

∫ t

0

g′(τ)

(t− τ)αj
dτ, t > 0,

where Γ( · ) stands for the Gamma function.

Unlike the usual parabolic equations characterized by exponential decay in time and
Gaussian profile in space, fractional diffusion equations possess properties of slow decay
in time and long-tailed profile in space. Therefore, fractional diffusion equations are more
suitable model equations than parabolic equations for modeling anomalous diffusion with
non-Fickian growth rates and long-tailed profiles (see e.g., Adams and Gelhar[1] and Hatano
and Hatano [6]). Theoretical research has developed rapidly, and it has been proven that
most properties of parabolic equations, such as well-posedness, (Strong) Maximum principle,
analyticity, and asymptotic behavior, have been parallelly extended to the fractional order
case. see, e.g., Liu, Rundell and Yamamoto [14], Luchko [15], Sakamoto and Yamamoto [19]
for the single-term time fractional diffusion equations (that is ℓ = 1). For the multi-term
case, one can refer to Li, Liu and Yamamoto [9], Liu [12], Luchko [16] and the references
therein.

In addition to the aforementioned aspects, the unique continuation principle (UCP) is
also one of the remarkable characteristics of parabolic equations. In recent years, there has
been increasing interest in extending this theory to fractional order equations, given their
widespread application in various areas of science and engineering. For example The UCP
was used to solve the uniqueness of some inverse problems on determining the spatially
dependent component of the sources ([7, 13, 20] and the references there in). Not only
for the inverse problems but also for the approximate control problems, one of the very
important key in dealing with these problems is the UCP, see e.g., Fujishiro and Yamamoto
[5].

To the best knowledge of the authors, the UCP for the multi-term case has not yet been
established. With this in mind, we aim to generalize this property to the fractional case.
Building on Laplace transforms and fractional Theta functions, we have

Theorem 1. Let I be a nonempty open subinterval of (0, 1) and 2αℓ > α1. We suppose
u ∈ L2(0, T ;H2(0, 1)) is a solution to the fractional diffusion equation (1.1). Then u = 0
in (0, 1)× (0, T ) provided that u ≡ 0 in I × [0, T ].

Uniqueness result similar to Theorem 1 was established in Li and Yamamoto [10], where
the one-dimensional time-fractional discussion equation was studied, and the uniqueness of
solutions was shown using the Theta function method. For the general case of multiple
dimensions, there is currently no positive answer regarding the UCP. However, under some
addition assumptions on the solutions, one can still obtain similar uniqueness results. We
refer to Jiang, Li, Liu and Yamamoto [7] and Sakamoto and Yamamoto [19] in which the
homogeneous Dirichlet boundary condition on the entire boundary was required and the
existence of eigensystem provides convenience for the argument. On the other hand, in
the case of the homogeneous initial condition, the UCP was proved in Cheng, Lin and
Nakamura [3] for half-order fractional diffusion equation using Carleman estimates for the
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operator ∂t − △2. For a general fractional order in the (0, 1) interval, Lin and Nakamura
[11] recently established the UCP by applying a newly developed Carleman estimate based
on calculus of pseudo-differential operators.

The remainder of this paper is organized as follows. In Section 2, we introduce all
necessary background information about the fundamental solution of (1.1) and the fractional
Theta function. Then, Section 3 is devoted to the proof of the main theorem. In Section
4.1, we propose an iterative thresholding algorithm for numerically simulating the UCP of
the solution. This is followed by several numerical examples in Section 4.2 that illustrate
the performance of the proposed method. Finally, a concluding remark is given in Section
5.

2 Preliminary material

2.1 Fundamental solution

Let K(x, t) be the fundamental solution of the following free space-time fractional diffusion
equation 

ℓ∑
j=1

qj∂
αj

t K(x, t) = ∂2
xK(x, t), x ∈ R, t > 0,

K(x, 0) = δ(x), x ∈ R,

(2.1)

where we denote δ(x) as the Dirac delta function. We consider the Laplace transform of the
fundamental solution K(x, t) with respect to time variable t. For this, we apply Laplace
transform on both sides of the equation (2.1) and then

ℓ∑
j=1

qjs
αjK̂(s) = ∂2

xK̂(s) +

ℓ∑
j=1

qjs
αj−1δ(x),

K(x, 0) = δ(x), x ∈ R.

Then taking Fourier transform F , and noting that the formula F [δ] = 1 and F [∂2
xK](ξ) =

−ξ2F [K](ξ), we see that

ℓ∑
j=1

qjs
αjF [K̂(s)] = −ξ2F [K̂(s)] +

ℓ∑
j=1

qjs
αj−1.

We denote ϕ(s) :=
∑ℓ

j=1 qjs
αj , then we can rephrase the above therm as follows

ϕ(s)F [K̂(s)] = −ξ2F [K̂(s)] + s−1ϕ(s).

Therefore

F [K̂(s)](ξ) =
s−1ϕ(s)

ϕ(s) + ξ2
.
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Using the Fourier inverse transform, we obtain the Laplace transform K̂ of the fundamental
solution to (2.1)

K̂(s) = F−1

[
s−1ϕ(s)

ϕ(s) + ξ2

]
=

1

2π

∫ ∞

−∞
eixξ

s−1ϕ(s)

ϕ(s) + ξ2
dξ.

We next calculate the complex integral F−1
[
s−1ϕ(s)
ϕ(s)+ξ2

]
.

Lemma 2.1.

F−1

[
s−1ϕ(s)

ϕ(s) + ξ2

]
(x) =

1

2s
ϕ

1
2 (s) exp{−ϕ

1
2 (s)|x|}.

Proof. From the inverse Fourier transform formula, we have

F−1

[
s−1ϕ(s)

ϕ(s) + ξ2

]
(x) =

1

2π

∫ ∞

−∞
eixξ

s−1ϕ(s)

ϕ(s) + ξ2
dξ.

We denote the contour from −R to R by C0, the semicircle with radius R in the upper
and lower half plane by CR+ and CR− respectively. Also let C+,C− be the closed contours
which consist of C0,CR+ and C0,CR− respectively.

For the case of x > 0,working on the closed contour C+, we have

1

2π

∫ ∞

−∞
eixξ

s−1ϕ(s)

ϕ(s) + ξ2
dξ = lim

R→+∞

1

2π

∮
C+

eixξ
s−1ϕ(s)

ϕ(s) + ξ2
dξ − lim

R→+∞

1

2π

∫
CR+

eixξ
s−1ϕ(s)

ϕ(s) + ξ2
dξ

= lim
R→+∞

1

2π

∮
C+

eixξ
s−1ϕ(s)

ϕ(s) + ξ2
dξ,

where the second limit is 0 as follows from Jordan’s Lemma. Since 0 < αj < 1 and qj > 0,

by our assumption, we have ℜϕ(s) =
∑ℓ

j=1 qj |s|αj cosαjθ ≥ 0, which in turns leads to

ℜϕ
1
2 (s) ≥ 0.

Then there is only one singular point ξ = iϕ
1
2 (s) in C+ which is continued by the upper

half plane. By the residue theorem, we have

lim
R→+∞

1

2π

∮
C+

eixξ
s−1ϕ(s)

ϕ(s) + ξ2
dξ = lim

R→+∞
2πi

1

2π
exp

{
ix(iϕ

1
2 (s))

} s−1ϕ(s)

2iϕ
1
2 (s)

=
1

2s
ϕ

1
2 (s) exp

{
−ϕ

1
2 (s)x

}
.

For the case of x < 0, similarly, we have

1

2π

∫ ∞

−∞
eixξ

s−1ϕ(s)

ϕ(s) + ξ2
dξ =

1

2s
ϕ

1
2 (s) exp

{
ϕ

1
2 (s)x

}
.

Therefore,

F−1

[
s−1ϕ(s)

ϕ(s) + ξ2

]
(x) =

1

2s
ϕ

1
2 (s) exp

{
−ϕ

1
2 (s)|x|

}
,

which completes the proof of the lemma.
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From the above lemma, it follows that the fundamental solutionK(x, t) has the following
formula of the Laplace transform with respect to t,

K̂(x, s) =
ϕ

1
2 (s)

2s
exp

{
−ϕ

1
2 (s)|x|

}
, x ∈ R, ϕ(s) =

ℓ∑
j=1

qjs
αj .

Lemma 2.2. The functions K(x, t) is even with respect to x and satisfies the following
estimates

|K(x, t)| ≤ C
ℓ∑

j=1

t−
αj
2 , (x, t) ∈ R× (0,∞), (2.2)

and for the Riemann-Liouville derivative D1−α
t K(x, t) with α > α1

2 :

|D1−α
t K(x, t)| ≤ C

ℓ∑
j=1

tα−
αj
2
−1, (x, t) ∈ R× (0,∞), (2.3)

where the constant C > 0 is independent of t, but may depend on α, {αj}ℓj=1.

Proof. From the Laplace transform of K(x, t):

K̂(x, t) =
1

2
s−1ϕ

1
2 (s) exp

{
−ϕ

1
2 (s)|x|

}
,

we conclude from the Fourier-Millin formula (e.g., Schiff [22]) for the inversion Laplace
transform that K(x, t) = L−1[K̂(s)] admits

K(x, t) =
1

4πi

∫ γ+i∞

γ−i∞
s−1ϕ

1
2 (s) exp

{
−ϕ

1
2 (s)|x|

}
estds,

where γ > 0 is any fixed constant, from which we can directly derive the following estimate

|K(x, t)| ≤ 1

4π

∫ γ+i∞

γ−i∞
|s|−1|ϕ

1
2 (s)| exp

{
−
√
2

2
|ϕ

1
2 (s)||x|

}
|ds|eγt.

Moreover, from the definition of ϕ(s), we see that

|ϕ(s)| ≥
ℓ∑

j=1

qj |s|αj cosαjθ ≥
ℓ∑

j=1

qj |s|αj cosαj
π

2
≥ c0

ℓ∑
j=1

|s|αj ,

where c0 := min
1≤j≤ℓ

{qj cos αj

2 π}. Therefore,

|K(x, t)| ≤ 1

4π

∫ γ+i∞

γ−i∞
|s|−1

 ℓ∑
j=1

qj |s|αj

 1
2

exp

−
√
2

2
c
1
2
0

 ℓ∑
j=1

|s|αj

 1
2

|x|

 |ds|eγt

≤ (max{qj})
1
2

4π

∫ γ+i∞

γ−i∞
|s|−1

 ℓ∑
j=1

|s|αj

 1
2

exp

−
√
2

2
|x|c

1
2
0

 ℓ∑
j=1

|s|αj

 1
2

 |ds|eγt.
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For short, we denote c1 :=
√
2
2 c

1
2
0 and nothing that s = γ + iη, η ∈ (−∞,+∞), we have

|K(x, t)| ≤ (max{qj})
1
2

4π

∫ ∞

−∞

[∑ℓ
j=1(γ

2 + η2)
αj
2

] 1
2

(γ2 + η2)
1
2

exp

−c1|x|
 ℓ∑
j=1

(γ2 + η2)
αj
2

 1
2

 dηeγt

=
max{q

1
2
j }

2π

∫ ∞

0

[∑ℓ
j=1(γ

2 + η2)
αj
2

] 1
2

(γ2 + η2)
1
2

exp

−c1|x|
 ℓ∑
j=1

(γ2 + η2)
αj
2

 1
2

 dηeγt

=
max{q

1
2
j }

2π

∫ ∞

0

 ℓ∑
j=1

(γ2 + η2)
αj
2
−1

 1
2

exp

−c1|x|
 ℓ∑
j=1

(γ2 + η2)
αj
2

 1
2

 dηeγt.

By changing the variable η/γ to η, we find

|K(x, t)| ≤
max{q

1
2
j }

2π

∫ ∞

0

 ℓ∑
j=1

(1 + η2)
αj
2
−1γαj

 1
2

exp

−c1|x|
 ℓ∑
j=1

(1 + η2)
αj
2 γαj

 1
2

 dηeγt.

We divide the integral on the right-hand side of above inequalities into two parts:

|K(x, t)|

≤
max{q

1
2
j }

2π

∫ 1

0

 ℓ∑
j=1

(1 + η2)
αj
2
−1γαj−2

 1
2

exp

−c1|x|
 ℓ∑
j=1

(1 + η2)
αj
2 γαj

 1
2

 dηeγtγ

+
max{q

1
2
j }

2π

∫ ∞

1

 ℓ∑
j=1

(1 + η2)
αj
2
−1γαj−2

 1
2

exp

−c1|x|
 ℓ∑
j=1

(1 + η2)
αj
2 γαj

 1
2

 dηeγtγ.

We denote the two terms on the right hand side of the above inequality as I1 and I2
respectively. We will estimate each of them separately. Firstly, for I1, we have

I1(x, t) ≤
max{q

1
2
j }

2π

∫ 1

0

 ℓ∑
j=1

γαj

 1
2

exp

−c1|x|
 ℓ∑

j=1

γαj

 1
2

 dηeγt

=
max{q

1
2
j }

2π

 ℓ∑
j=1

γαj

 1
2

exp

−c1|x|
 ℓ∑

j=1

γαj

 1
2

+ γt

 .

If γt ≤ 1, a direct calculation implies

I1(x, t) ≤
max{q

1
2
j }

2π

 ℓ∑
j=1

γαj

 1
2

eγt
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=
max{q

1
2
j }

2π

ℓ∑
j=1

(γt)
αj
2 t−

αj
2 eγt ≤

emax{q
1
2
j }

2π

ℓ∑
j=1

t−
αj
2 , t > 0.

If γt > 1, we take γ = γ∗ s.t. γ∗t =
c1
2 |x|

(∑ℓ
j=1 γ

αj
∗

) 1
2
therefore we have

I1(x, t) ≤
max{q

1
2
j }

2π

 ℓ∑
j=1

γ
αj
∗

 1
2

e−γ∗t =
max{q

1
2
j }

2π

 ℓ∑
j=1

(γ∗t)
αj t−αj

 1
2

e−γ∗t.

Now from the Cauchy-Schwartz inequality, and noting the inequality

ℓ∑
j=1

tαje−t ≤
ℓ∑

j=1

(αj)
αje−αj ≤ ℓ, t > 0,

we see that

I1(x, t) ≤
max{q

1
2
j }

2π

 ℓ∑
j=1

(γ∗t)
αj

 1
2
 ℓ∑

j=1

t−αj

 1
2

e−γ∗t

≤
ℓmax{q

1
2
j }

2π

 ℓ∑
j=1

t−αj

 1
2

≤
ℓmax{q

1
2
j }

2π

ℓ∑
j=1

t−
αj
2 , t > 0.

For I2, we see that

I2(x, t) ≤
max{q

1
2
j }

2π

∫ ∞

1

 ℓ∑
j=1

ηαj−2γαj−2

 1
2

exp

−c1|x|
 ℓ∑
j=1

(1 + ηαj )γαj

 1
2

 dηeγtγ.

Moreover, by a direct calculation, it is not difficult to see that ℓ∑
j=1

aj

 1
2

≤
ℓ∑

j=1

a
1
2
j , for aj ≥ 0,

and then

I2(x, t)

≤
max{q

1
2
j }

2π

∫ ∞

1

 ℓ∑
j=1

η
αj
2
−1γ

αj
2

 exp

−c1|x|
ℓ∑

j=1

(1 + η
αj
2 )γ

αj
2

 dηeγt

=
max{q

1
2
j }

2π

∫ ∞

1

 ℓ∑
j=1

η
αj
2
−1γ

αj
2

 exp

−c1|x|
ℓ∑

j=1

η
αj
2 γ

αj
2

 dη exp

γt− c1|x|
ℓ∑

j=1

γ
αj
2


≤

max{q
1
2
j }

πmin{αj}

∫ ∞

1
exp

−c1|x|
ℓ∑

j=1

η
αj
2 γ

αj
2

 d

 ℓ∑
j=1

η
αj
2 γ

αj
2

 exp

γt− c1|x|
ℓ∑

j=1

γ
αj
2
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≤
max{q

1
2
j }

πmin{αj}

exp
{
−c1|x|

∑ℓ
j=1 γ

αj
2

}
c1|x|

exp

γt− c1|x|
ℓ∑

j=1

γ
αj
2


=

√
2max{q

1
2
j }

π
√
c0min{αj}

1

|x|
exp

γt− c1|x|
ℓ∑

j=1

γ
αj
2

 .

If γt > 1, we take γ = γ∗ s.t. γ∗t =
c1
2 |x|

∑ℓ
j=1 γ

αj
2

∗ , therefore

I2(x, t) ≤
√
2max{q

1
2
j }

π
√
c0min{αj}

1

|x|
e−γ∗t ≤

max{q
1
2
j }

2πmin{αj}
1

t

ℓ∑
j=1

γ
αj
2
−1

∗ e−γ∗t

=
max{q

1
2
j }

2πmin{αj}
t−1

ℓ∑
j=1

(γ∗t)
αj
2
−1t1−

αj
2 e−γ∗t ≤ C

ℓ∑
j=1

t−
αj
2 , t > 0.

If γt ≤ 1, we take γ = γ∗ s.t. γ∗t = 2c1|x|
∑ℓ

j=1 γ
αj
2 , therefore

I2(x, t) ≤
C

|x|
exp

−c1|x|
ℓ∑

j=1

γ
αj
2

∗


=

C

|x|
∑ℓ

j=1 γ
αj
2

∗

exp

−c1|x|
ℓ∑

j=1

γ
αj
2

∗


ℓ∑

j=1

γ
αj
2

∗

≤ C
ℓ∑

j=1

γ
αj
2

∗ = C
ℓ∑

j=1

(γ∗t)
αj
2 t−

αj
2 ≤ C

ℓ∑
j=1

t−
αj
2 , t > 0,

which finishes the proof of the first part of the lemma.

For evaluating D1−α
t K with α > α1

2 , we first calculate its Laplace tranform L[D1−α
t K].

Indeed, in view of the formula

L{Dα
t f(t); s} = sαL{f(t); s} − J1−αf(0+).

Moreover, since |K(x, t)| ≤ C
∑ℓ

j=1 t
−

αj
2 , we have JαK(x, t) tends to 0 as t → 0, hence a

direct calculation yields
L{D1−α

t K(x, t); s} = sαK̂(s).

Now following the above argument for (2.2), the desired result in (2.3) can be proved.

Remark 2.1. This result parallelly generalized the estimates of the fundamental solution
in Kochubei [8, Proposition 1] to the multi-term time-fractional case. However, based on
our calculation, we must assume a condition 2αℓ > α1. The estimate for the fundamental
solution without this assumption remains open.
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2.2 Fractional Theta function

A representation of the solution to the initial-boundary value problem in a bounded domain
can be constructed via the usual Theta function for the heat equation Cannon [2]. We
consider the generalization of this function by

θ(x, t) =
∞∑

m=−∞
K(x+ 2m, t), t > 0.

Now investigate the Laplace transform of the fractional Theta function θ with respect to
time variable t ∈ (0,∞). Indeed, from the definition of θ and the Laplace transform of the
fundamental solution to (2.1), we see that

2L{θ(x, t); s} = s−1ϕ
1
2 (s)

∞∑
m=−∞

e−|x+2m|ϕ
1
2 (s).

For x ∈ [0, 1], we further have

2L{θ(x, t); s} = s−1ϕ
1
2 (s)

(
exϕ

1
2 (s)

−1∑
m=−∞

e2mϕ
1
2 (s) + e−xϕ

1
2 (s)

∞∑
m=0

e−2mϕ
1
2 (s)

)

=
ϕ

1
2 (s)

s

(
exϕ

1
2 (s)

∞∑
m=1

e−2mϕ
1
2 (s) + e−xϕ

1
2 (s)

∞∑
m=0

e−2mϕ
1
2 (s)

)

=
ϕ

1
2 (s)

s

exϕ
1
2 (s)

e2ϕ
1
2 (s) − 1

+
ϕ

1
2 (s)

s

e(2−x)ϕ
1
2 (s)

e2ϕ
1
2 (s) − 1

, s > 0.

From the definition of the fractional Theta function, it is not difficult to see that θ(1, 0) = 0.
Then using the formula

L{D1−αj

t θ(1, t); s} = s1−αjL{θ(1, t); s},

we are led to

L{D1−αj

t θ(1, t); s} = ϕ
1
2 (s)

sαj

eϕ
1
2 (s)

e2ϕ
1
2 (s) − 1

, s > 0.

As an application of the fractional Theta function θ(x, t), we can obtain a representation
formula of the solution to (3.2) can by obtained.

Lemma 2.3. For piecewise-continuous functions u0, g0 and g1, the solution of

ℓ∑
j=1

qj∂
αj

t u− ∂2
xu = 0 in (0, 1)× (0, T ),

u(·, 0) = u0 in (0, 1),

ux(0, ·) = g0, ux(1, ·) = g1 in (0, T )

(2.4)
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has the form
u = w(x, t) + v1(x, t) + v2(x, t), (x, t) ∈ (0, 1)× (0, T ),

where

w(x, t) =

∫ 1

0
(θ(x− ξ, t) + θ(x+ ξ, t))u0(ξ)dξ,

v1(x, t) = 2
ℓ∑

j=1

qj

∫ t

0
(D

1−αj

t θ)(x, t− τ)g0(τ)dτ

and

v2(x, t) = 2

ℓ∑
j=1

qj

∫ t

0
(D

1−αj

t θ)(x− 1, t− τ)g1(τ)dτ.

The proof is extremly similar to the argument used in Rundell, Xu and Zuo [18, Lemma
3.1], so we omit the proof of this lemma.

3 Proof of the main result

3.1 Cauchy problem

Now let us turn to considering the following lateral Cauchy problem
ℓ∑

j=1

qj∂
αj

t u = ∂2
xu in (0, 1)× (0, T ),

u(0, ·) = ux(0, ·) = 0 in (0, T ).

(3.1)

We first set u0(x) := u(x, 0) and g(t) = ux(1, t), we extend the function g to the interval
[0,+∞) by letting g ≡ 0 outside of (0, T ), and by g̃ we denote the extension, and by ũ we
denote the solution to the following auxiliary sysytem

ℓ∑
j=1

qj∂
αj

t ũ− ∂2
xũ = 0 in (0, 1)× (0,+∞),

ũ(·, 0) = u0 in (0, 1),

ũx(0, ·) = 0, ũx(1, ·) = g̃ in (0,+∞).

(3.2)

Remark 3.1. From the estimates for the fundamental solution in Lemma 2.2, following
the argument used in Li and Yamamoto [10, Lemma 2.2], one can easily show that there
exist positive constants C and M such that

|ũ(0, t)| ≤ CeMt, t > 0. (3.3)
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We will prove that the boundary ũ(0, ·) = 0 in (0, T ) combined with (3.2) can uniquely
determine the initial and boundary value, that is, u0 = 0 and g̃ = 0, which further implies
the uniqueness of the lateral Cauchy problem (3.1).

Lemma 3.1. Let T > 0 be a fixed constant and u ∈ L2(0, T ;H2(0, 1)) be a solution to the
lateral Cauchy problem (3.1). Then we have

u(x, t) = 0, (x, t) ∈ [0, 1]× [0, T ].

Proof. From the above calculations and settings, and noting lemma, we see that ũ is an
extension of u which solves the Cauchy problem (3.1), that is ũ = u in [0, 1]× [0, T ]. Using
the assumption that u(0, t) = 0 for t ∈ [0, T ], we find

2

∫ 1

0
θ(ξ, t)u0(ξ)dξ + 2

ℓ∑
j=1

qj

∫ t

0
D

1−αj

t θ(1, t− τ)g̃(τ)dτ =

{
0, t ∈ (0, T ),

ũ(0, t), t ∈ [T,+∞).

Taking the Laplace transforms on both sides of the above equation, we have

2

∫ 1

0
L{θ(ξ, t); s}u0(ξ)dξ + 2

ℓ∑
j=1

qjL{D
1−αj

t θ(1, t); s}L{g̃(t); s} =
∫ ∞

T
ũ(0, t)e−stdt, (3.4)

where L{φ; s} means the Laplace transform of a function φ.

Combining the above calculation, form (3.4), we find that

L{g̃(t); s}

=
1

2

∫ ∞

T
ũ(0, t)e−stdt−

∫ 1

0

ϕ
1
2 (s)

s

eξϕ
1
2 (s) + e(2−ξ)ϕ

1
2 (s)

e2ϕ
1
2 (s) − 1

u0(ξ)dξ

/ ℓ∑
j=1

qj
ϕ

1
2 (s)

sαj

eϕ
1
2 (s)

e2ϕ
1
2 (s) − 1


=
1

2

 ℓ∑
j=1

qjs
−αj

−1

ϕ− 1
2 (s)

[
eϕ

1
2 (s) − e−ϕ

1
2 (s)

] ∫ ∞

T
ũ(0, t)e−stdt

− 1

2s

 ℓ∑
j=1

qjs
−αj

−1 ∫ 1

0
e(ξ−1)ϕ

1
2 (s)u0(ξ)dξ −

1

2s

 ℓ∑
j=1

qjs
−αj

−1 ∫ 1

0
e(1−ξ)ϕ

1
2 (s)u0(ξ)dξ

= : I1(s) + I2(s)− I3(s), s > 0.

From the choice of g̃, we see that

L{g̃(t); s} =
∫ T

0
g(t)e−stdt ≤ ∥g∥L∞(0,T )

∫ T

0
e−stdt ≤ ∥g∥L∞(0,T )s

−1, s > 0.

Moreover, from the estimate (3.3), it follows that∫ ∞

T
|ũ(0, t)|e−stdt ≤

∫ M

T
Ce(M−s)tdt =

CeMT

s−M
e−sT , s > 2M.
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Then for I1, we have

|I1(s)| ≤
1

2

 ℓ∑
j=1

qjs
−αj

−1

ϕ− 1
2 (s)

(
eϕ

1
2 (s) − e−ϕ

1
2 (s)

)
CeMT

s−M
e−sT

=
1

2

(∑ℓ
j=1 qjs

−αj

)−1

(
∑ℓ

j=1 qjs
αj )

1
2

(
e(

∑ℓ
j=1 qjs

αj )
1
2 − e−(

∑ℓ
j=1 qjs

αj )
1
2

)
CeMT

s−M
e−sT

≤ Ce−C1s, s > 2M.

For I2, since u0 := u(·, 0) ∈ C[0, 1], we have

|I2(s)| ≤
1

2
s−1

 ℓ∑
j=1

qjs
−αj

−1

∥u0∥L∞(0,1)

∫ 1

0
e(ξ−1)ϕ

1
2 (s)dξ

≤ 1

2
∥u0∥L∞(0,1)

1

ϕ
1
2 (s)

(1− e−ϕ
1
2 (s))

≤ 1

2

1

ϕ
1
2 (s)
∥u0∥L∞(0,1) ≤

1

2
∥u0∥L∞(0,T )s

−αℓ
2 , s > 0.

We then have

|I3(s)| ≤ ce−c1s + ∥g∥L∞(0,T )s
−1 +

1

2
∥u0∥L∞(0,1)s

−αℓ
2 , s > 2M,

which further implies∣∣∣∣∫ 1

0
e(1−ξ)ϕ

1
2 (s)u0(ξ)dξ

∣∣∣∣ ≤ c2(1 + s1−
αℓ
2 ), s > 2M.

The change of variables implies∣∣∣∣∫ 1

0
eηzu0(1− η)dη

∣∣∣∣ ≤ c2z
γ , γ large enough, z > 2M.

For 0 < |z| < 2M , we have∣∣∣∣∫ 1

0
eηzu0(1− η)dη

∣∣∣∣ ≤ ∥u0∥L∞(0,1)e
z ≤ ∥u0∥L∞(0,1)e

2M .

Therefore ∣∣∣∣∫ 1

0
eηzu0(1− η)dη

∣∣∣∣ ≤ c3e
az, z > 0.

From Phragmèn-Lindelöf principle, following the argument used in [10, Corollary 2.1], we
must have

u0 ≡ 0 in [0, 1].

We next use Titchmarsh convolution theorem (see Doss [4] and Titchmarsh [21]) to derive
that g̃(t) ≡ 0, t > 0, then g ≡ 0. From the uniqueness of the initial-boundary value problem
(3.2), we see that ũ ≡ 0, that is u ≡ 0, we finish the proof of the lemma.
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3.2 Proof of the main result

Theorem 1 directly follows from the above lemmas.

Proof of Theorem 1. Indeed, setting I = (a, b) with (a, b) ⊂ [0, 1], by u|I×(0,T ), we have
u(a, ·) = ux(a, ·) = 0 and u(b, ·) = ux(b, ·) = 0 in (0, T ), changing independent variables
x→ a− x and x→ x− b in the intervals (0, a) and (b, 1) respectively, and applying lemma
3.1, we obtain u ≡ 0 in (0, a)× (0, T ) and (b, 1)× (0, T ).

4 Numerical simulation

On account of the theoretical uniqueness result explained in the previous section, this section
is primarily intended to develop an effective numerical method. that is, the numerical
reconstruction of the solution in the domain (0, 1) × (0, T ) from the addition data u in
I × (0, T ), where I is a subinterval of (0, 1).

4.1 Iterative thresholding algorithm

We consider the initial-boundary value problem for a single-term time-fractional diffusion
equation with homogeneous Dirichlet boundary condition

∂α
t u−∆u = 0, (x, t) ∈ (0, 1)× (0, T ),

u(x, 0) = a(x), x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, T ).

(4.1)

In order to emphasize that the solution of problem (4.1) depends on the unknown function
a, we write it as u(a).

Lemma 4.1. [5, Lemma 3.4] For α > 0 and g1, g2 ∈ L2(0, T ), there holds∫ T

0
(Jα

0+g1(t))g2(t)dt =

∫ T

0
g1(t)J

α
T−g2(t)dt,

where Jα
T−g denotes the α-th order backward integrals of g are defined by

Jα
T−g(t) =

1

Γ(α)

∫ T

t
(τ − t)α−1g(τ)dτ, t ∈ (0, T ).

From this, we set atrue ∈ L2(0, 1) as the true solution to problem (4.1), and by using
noise contaminated observation data uδ in I×(0, T ), we carry out numerical reconstruction.
Where uδ satisfies ∥uδ −u(atrue)∥L2(I×(0,T )) ≤ δ and δ stands for the noise level. For avoid-

ing ambiguity, we specify uδ = 0 out of I × (0, T ) so that it is well-defined in (0, 1)× (0, T ).
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By using the Tikhonov regularization technique, we can transform the reconstruction of
the initial value into the minimization of the following output least squares functional

min
a∈L2(0,1)

Φ(a), Φ(a) := ∥u(a)− uδ∥2L2(I×(0,T )) + ρ∥a∥2L2(0,1), (4.2)

where ρ > 0 is the regularization parameter.

Now we need the information about the Fréchet derivative Φ′(a) of the objective func-
tional Φ(a). For an arbitrarily fixed direction g ∈ L2(0, 1), it follows from direct calculations
that

Φ′(a)g = 2

∫ T

0

∫
I
(u(a)− uδ)(u′(a)g)dxdt+ 2ρ

∫ 1

0
agdx

= 2

∫ T

0

∫
I
(u(a)− uδ)u(g)dxdt+ 2ρ

∫ 1

0
agdx. (4.3)

Here u′(a)g denotes the Fréchet derivative of u(a) in the direction g, and the linearity of
(4.1) immediately yields

u′(a)g = limϵ→0
u(a+ ϵg)− u(a)

ϵ
= u(g).

It is clear that using (4.3) to evaluate Φ′(a)g for all g ∈ L2(0, 1) is extremely expensive, since
one should solve system (4.1) for u(g) with g varying in L2(0, 1) in the computation for a
fixed a. We introduce the adjoint system of (4.1) to reduce the computational costs for the
Fréchet derivatives, that is, the following system for a backward time-fractional diffusion
equation 

Dα
T v +∆v = χI(u(a)− uδ), (x, t) ∈ (0, 1)× (0, T ),

J1−α
T v(x, T ) = 0, x ∈ (0, 1),

v(0, t) = 0, v(1, t) = 0, t ∈ (0, T ),

(4.4)

where Dα
Tu stands for the backward Riemann-Liouville derivative of u which is defined

by Dα
Tu := ∂tJ

1−α
T− u, and χI denotes the characterization function of I, and we write the

solution of (4.4) as v(a).
We can further treat the first term in (4.3) as∫ T

0

∫
I
(u(a)− uδ)u(g)dxdt =

∫ T

0

∫ 1

0
χI(u(a)− uδ)u(g)dxdt

=

∫ T

0

∫ 1

0
(Dα

T v +∆v)u(g)dxdt

=−
∫ 1

0
J1−α
T va(0)gdx,

implying

Φ′(a)g = 2

∫ 1

0
(ρag − J1−α

T va(0)g)dx, ∀g ∈ L2(0, 1).

This suggests a characterization of the solution to the minimization problem (4.2).

14



Lemma 4.2. The function a∗ ∈ L2(0, 1) is a minimizer of the functional Φ(a) in (4.2)
only if it satisfies the variational equation

ρa∗g − J1−α
T va∗(0)g = 0, (4.5)

where va∗(0) solves the backward problem (4.4) with the coefficient a∗.

We can obtain the iterative thresholding algorithm by adding Ma∗(M > 0) to both
sides of (4.5) and rearranging the equation,

ak+1 =
M

M + ρ
ak +

1

M + ρ
J1−α
T vak(0)

=
M

M + ρ
ak +

1

M + ρ

1

Γ(1− α)

∫ T

t
(τ − t)−αvak(x, τ)dτ |t=0

=
M

M + ρ
ak +

1

M + ρ

1

Γ(1− α)

∫ T

0
τ−αvak(x, τ)dτ, (4.6)

Where M > 0 is a tuning parameter for the convergence, it suffices to choose

M ≥ ∥A∥2op, where

A : L2(0, 1)→ L2(I × (0, T )),

a 7→ u(a)|I×(0,T ). (4.7)

Here ∥ · ∥op denotes the operator norm of an operator under consideration. There is the
iterative thresholding algorithm for the reconstruction of the initial value.

Algorithm 4.1. Choose a tolerance ε > 0, a regularization parameter ρ > 0 and a tuning
constant M > 0 according to (4.7). Give an initial guess a0 ∈ L2(0, 1), and set k = 0.
1.Compute ak+1 by the iterative update (4.6).
2.If ∥ak+1− ak∥L2(0,1)/∥ak∥L2(0,1) < ε, stop the iteration. Otherwise, update k ← k+1 and
return to Step 1.

As can be seen from (4.6), we only need to solve the forward problem (4.1) once for
u(ak) and the backward problem (4.4) once for v(ak) subsequently at each iteration step.
Therefore, the numerical implementation of Algorithm 1 is easy and computationally cheap.

As a result, for the adjoint system of (4.4), we know that v(a) is the solution to the
following problem with the Caputo derivative

− ∂α
t (v) + ∆v = χI(u(a)− uδ) in (0, 1)× (0, T ),

v = 0 in (0, 1)× {0},
v(0, t) = v(1, t) = 0 in (0, T ),

(4.8)

because of the homogeneous terminal value J1−α
T− v(·, T ) = 0, it suffices to deal with (4.8)

instead of (4.4) by the same forward solver for (4.1) in the numerical simulation.
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4.2 Numerical experiments

In this section, we will apply the iterative thresholding algorithm established in the previous
subsection to the numerical treatment of unique continuation of the solution, that is, the
identification of the value of the solution in (0, 1)× (0, T ) from the addition data u|I×(0,T ).
We will illustrate the effectiveness of the reconstruction method through a large number of
test examples.

With the true solution atrue ∈ L2(0, 1),we produce the noisy observation data uδ by
adding uniform random noises to the true data,i.e

uδ(x, t) = (1 + δrand(−1, 1))u(atrue)(x, t), (x, t) ∈ I × (0, T ).

Here rand(-1,1) denotes the uniformly distributed random number in [-1,1] and δ ≥ 0 is the
noise level.
In addition to illustrative graphs, we mainly use the relative L2-norm error to evaluate
numerical performance

erra :=
∥ar − atrue∥L2(0,1)

∥atrue∥L2(0,1)

where ar is regarded as the reconstructed solution produced by Algorithm 4.1.

Then, we study the solution of the direct problem, the numerical solution obtained
by difference scheme is compared with the reconstructed solution obtained by inversion
algorithm, we evaluate the numerical performance by the relative L2-norm error

erru :=
∥ur − un∥L2(0,1)

∥un∥L2(0,1)

Where ur stands for the reconstructed solution and un denotes the numerical solution.

We divide the space-time region [0, 1]× [0, 1] into 40× 40 equidistant meshes. First we
fix the noise level δ = 0.5% and the observation subdomain I = (0, 0.05)∪ (0.95, 1) and test
the algorithm with the following settings:
(a) α = 0.2, M = 8× 10−4, ρ = 10−7, atrue(x) =

sin(πx)−x(x−1)
Γ(2−α) ,

initial guess a0(x) = 13, set the tolerance parameter ε = 10−4.

(b) α = 0.4, M = 9× 10−4, ρ = 9× 10−9, atrue(x) =
x−x2

Γ(2−α) ,

initial guess a0(x) = 3, set the tolerance parameter ε = 10−4.
(c) α = 0.3, M = 10−4, ρ = 10−7, atrue(x) = (x− 1)(ex − 1),
initial guess a0(x) = −8, set the tolerance parameter ε = 4× 10−4.
(d) α = 0.3, M = 10−4, ρ = 10−7, atrue(x) = 1− |2x− 1|,
initial guess a0(x) = −8, set the tolerance parameter ε = 4× 10−4.

In figure 1-2, for case(a), the iteration steps k = 786 is obtained using the Algorithm
4.1 to obtain the reconstructed solution of the initial value, and the relative error of the
reconstructed solution and the true solution of the initial value erra = 4.71%, the relative
error of the reconstructed solution of the direct problem obtained by inversion algorithm
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Figure 1: Case(a): True solutions atrue and
reconstruction ar

Figure 2: Case(a): Numerical solutions un
and reconstruction ur

Figure 3: Case(b): True solutions atrue and
reconstruction ar

Figure 4: Case(b): Numerical solutions un
and reconstruction ur

Figure 5: Case(c): True solutions atrue and
reconstruction ar

Figure 6: Case(c): Numerical solutions un
and reconstruction ur
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Figure 7: Case(d): True solutions atrue and
reconstruction ar

Figure 8: Case(d): Numerical solutions un
and reconstruction ur

and the numerical solution obtained by difference scheme erru = 1.36%. In figure 3-4, for
case(b), the iteration steps k = 863 and the relative error between the reconstructed solution
and the true solution of the initial value erra = 4.36%, the relative error of the numerical
solution and the reconstructed solution of the direct problem erru = 1.29%. In figure 5-6,
for case(c), the iteration steps k = 1016 and the relative error between the reconstructed
solution and the true solution of the initial value erra = 6.80%, the relative error of the
numerical solution and the reconstructed solution of the direct problem erru = 1.77%. In
figure 7-8, for case(d), owing to the poor regularity of the target function, the reconstruction
results are not as well as those of the smooth case in the previous examples. The iteration
steps k = 2217 and the relative error between the reconstructed solution and the true
solution of the initial value erra = 12.67%, the relative error of the numerical solution
and the reconstructed solution of the direct problem erru = 3.56%. Figure 1-6 and the
relative error erra, erru indicate the efficiency and accuracy of the proposed Algorithm 4.1
for simulating the unique continuation.

5 Concluding remarks

In this paper, on the basis of the Theta function method, we first gave a representation
formula of the solution and showed the uniqueness of the solution to the Cauchy problem
by the use of the Laplace transform argument, from which we further verified the unique
continuation property of the solution to (1.1). Specifically, we proved that a solution to
a fractional diffusion equation can be uniquely determined from an interior subdomain.
The method used in the proof is new method that can effectively overcome the difficulties
caused by the non-locality of fractional derivatives. This result and the used methods
not only provide theoretical foundation for the fractional diffusion equations but also open
up new possibilities for studying related inverse problems in areas such as inverse source
problems and approximate control problem in practical applications.

Let us mention that the proof of the unique continuation principle heavily relies on the
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Theta function method which enables one to derive an explicit representation formula of the
solution. It would be interesting to investigate what happens about the unique continuation
property of the solution in the general dimensional case. Moreover, in Theorem 1, we
only proved the uniqueness result for determining the solution from the information of the
solution in interior domain. In comparison, it is known that conditional stability results
hold for the same problems for elliptic or parabolic equations based on Carleman estimates.
Unfortunately, such techniques do not work in the case of fractional diffusion equations due
to the absence of the fundamental integration by parts for the fractional derivatives.

In the numerical aspect, we reformulate the unique continuation principle as an opti-
mization problem with Tikhonov regularization. After the derivation of the corresponding
variational equation, we can characterize the minimizer by employing the associated back-
ward fractional diffusion equation, which results in our iterative method. Then several
numerical experiments for the reconstructions are implemented to show the efficiency and
accuracy of the proposed Algorithm 4.1 for simulating the unique continuation. Here we
point out that the homogeneous boundary condition was assumed in deriving Algorithm 4.1.
It will be intriguing to derive Algorithm 4.1 without assuming the homogeneous boundary
condition, as the algorithm for the general case still remains a challenge to be solved.
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