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Abstract

This paper presents a new general construction of copula that includes some known
families such as the Farlie-Gumbel-Morgenstern copula family. This general form of
copula helps address extreme cases of mixing and justifies optimality of the results of
Longla [1] and Longla [2] on mixing for copula-based Markov chains. Some examples are
presented to show that the results can not be extended by weakening the assumptions.
keywords Copula-based Markov chains, Mixing for Markov chains, ergodicity, Markov
chain central limit theorem

1 Introduction

In this paper, a copula is a bivariate function C(u, v) defined on [0, 1]2, such that
C(0, u) = C(u, 0) = 0 and C(u, 1) = C(1, u) = u for all u ∈ [0, 1] and

C(u1, v1) + C(u2, v2)− C(u2, v1)− C(u1, v2) ≥ 0, for all (u, v) ∈ [0, 1]2.

This definition is equivalent in probability theory to the the requirement that C(u, v) is
the joint cumulative distribution of two random variables, each of which has a uniform
distribution on [0, 1] [1]. Darsow et al [2] present properties of such functions and their
relationship to Markov chains. Namely, a one step discrete time stationary Markov
chain, can be represented by its copula and stationary distribution. To obtain a non-
stationary Markov chain, one can modify the copulas of some consecutive variables of the
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chain or some marginal distributions. Moreover, if the chain is stationary with uniform
marginal distribution, then the transition probabilities are fully defined by C,1(u, v),
which is the derivative of C(u, v) with respect to its first parameter. Among important
properties of a copula, we have absolute continuity, which allows to find probabilities
using integrals of the density function. We say that a copula is absolutely continuous if
there exists a function c(u, v) defined on [0, 1]2 such that for all (u, v) ∈ (0, 1)2,

C(u, v) =

∫ u

0

∫ v

0

c(s, t)dtds = AC(u, v), c(u, v) =
∂2

∂u∂v
C(u, v).

The function c(u, v) is called density of the copula C(u, v). In general, a copula has an
absolutely continuous part denoted AC(u, v). And C(u, v) = AC(u, v) if and only if
the copula is absolutely continuous. This class of copulas has been widely studied for
mixing properties in several works such as [3-5] and the references therein. The singular
part of the copula is defined as SC(u, v) = C(u, v) − AC(u, v). Some copulas, such as
the Hoeffding lower and upper bounds are singular, which means that their absolutely
continuous part is equal to 0. Copulas such as Clayton, Farlie-Gumbel-Morgenstern
(FGM), Gaussian, trigonometric copulas of Chesneau [6] are absolutely continuous.
Copulas of the Mardia or Frechet families have non-zero absolutely continuous and
singular parts. The copulas that we consider in this work are absolutely continuous.
The fold product of copulas that is used to find the joint distribution of (U0, Un) is given
by C1(u, v) = C(u, v) and Cn+1(u, v) = Cn ∗ C(u, v) for n > 1; where A ∗ B(u, v) =∫ 1

0
A,2(u, t)B,1(t, v)dt and f,i is the derivative with respect to the i-th variable of f .

2 Copula models and mixing

Here we introduce the mixing property that is used to establish the central limit theorem
for parameter estimators of copula models based on our model. We say that the Markov
chain generated by a copula C(u, v) is ψ-mixing, if ψn(C) → 0 as n→ ∞, where ψn(C)
is defined as follows. Let A,B ⊂ I = [0, 1]. Assume that µn(A × B) is the measure of
the set A×B induced by the joint distribution of any of its consecutive states. Denote
µ(A) the Lebesgue measure of A. Assume that the Marginal distribution of the Markov
chain is uniform on [0, 1]. By Longla [5], µn(A×B) = P (X0 ∈ A,Xn ∈ B), and

ψn(C) = sup
A,B

|µ
n(A×B)

µ(A)µ(B)
− 1|.

This coefficient allows to control the variance of partial sums of functions of the Markov
chains when establishing the central limit theorem. Longla [4] provided a result for
convex combinations of stationary Markov chains, wile Longla et al. [5] provided a result
for Markov chains generated by absolutely a continuous copula of bounded density.
Bradley [7] presented a survey on the topic of strong mixing conditions, including ψ-
mixing. Several authors have worked on mixing coefficients and their implications for
the central limit theorem. Ibragimov [8], proposed a central limit theorem implied by
some rates of mixing. This last result is applicable to the Markov chains that we study
in this paper, because ψ-mixing implies ϕ-mixing; and the properties of our copulas
helps compute in closed form the variance of partial sums.

2.1 Our copula examples

Consider a bounded function φ(x):
∫ 1

0
φ(x)dx =

∫ 1

0
φ2(x)dx− 1 = 0. Define

Cλ(u, v) = uv + λΦ(u)Φ(v), Φ(u) =

∫ u

0

φ(s)ds. (2.1)
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Theorem 2.1. The Function Cλ(u, v) is a copula if and only if − 1
maxφ2(x) ≤ λ ≤

− 1
minφ(x)maxφ(x) . Moreover, a Markov chain (U0, · · · , Un) generated by (2.1) with |λ|<

1, is ψ-mixing and the joint distribution of (U0, Un) is C
n
λ (u, v) = Cλn(u, v).

Theorem 2.1 shows that along the Markov chain, the joint distribution of any two
variables remains in the copula family. This fact eases the study of mixing properties
and large sample theory for functions of the Markov chain.

Longla et al [5] showed that this mixing coefficient converges to 0 if the copula
is absolutely continuous, the marginal distribution is continuous and for some integer
m, the density of the copula Cm(u, v), is strictly bounded by 2 (cm(u, v) < 2 for all
u, v ∈ [0, 1]). Using the distribution of (U0, Um), for any integer m, the density of
Cm

λ (u, v) satisfies |cmλ (u, v) − 1|< k|λ|m, where k is the smallest number larger than
φ2(x) for all (u, v) ∈ [0, 1]2. Given that |λ|< 1, it follows that cm(u, v) < 2 for large
enough values of m. Therefore, by Longla et al [5], Markov chains generated by Cλ(u, v)
and any continuous distribution is ψ-mixing.

2.2 Extremes of the copula family

Consider φ(x) =
√
αI(x < 1

1+α )−
1√
α
I(x ≥ 1

1+α ), 0 < α ≤ ∞ and min(α, 1/α) ≤ λ < 1.

Let I = [0, 1
1+α ]

2, II = [0, 1
1+α ]×( 1

1+α , 1], III = ( 1
1+α , 1]× [0, 1

1+α ] and IV = ( 1
1+α , 1]

2.

1. If λ = −1/α, 1 < α <∞, then the density of the copula is cλ(u, v) =
(1+α)

α I((u, v) ∈
II ∪ III) + (α2−1)

α2 I((u, v) ∈ IV ). This copula density is equal to zero on the set
of non-zero mesure Lebesgue measure I, but generates ψ-mixing Markov chains.

2. If λ = −α, 0 < α < 1, then the density of the copula is cλ(u, v) = (1+α)I((u, v) ∈
II ∪ III)+ (1−α2)I((u, v) ∈ I). This copula density is equal to zero on the set of
non-zero Lebesgue measure IV , but generates ψ-mixing Markov chains.

3. If λ = 1, 0 < α <∞, then the density of the copula is cλ(u, v) = (1+α)I((u, v) ∈
I)+(α−1+1)I((u, v) ∈ IV ). This copula density is equal to zero on the set of non-
zero Lebesgue measure II ∪ III, and does not generate ergodic Markov chains.
This density is not strictly less than 2.

4. For α = 1 and λ = 1 (or λ = −1), we have a density that is constant and equal to
2 on its support. This example shows that the result of Longla et al. [5] can not
be extended by relaxing the condition cm(u, v) < 2 for some integer m.

3 conclusion

This example shows that the results of Longla [5] cannot be extended in general. There
exist ψ-mixing Markov chains based on copulas with density equal to 0 on non-zero
measure sets.
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