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Let Z be the set of integers, and let n > 1 be an integer. Then the set of all integers

that have the same remainder modulo n is called a residue class modn. If a residue

class contains an integer that is relatively prime to n, then it is called a reduced residue

class. The set of all reduced residue classes modn forms an Abelian group with a
1
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multiplication induced from the multiplication of integers, which is denoted by (Z/nZ)∗.
If the group is cyclic, then its generator or all integers in the generator are called primitive

roots modn. It is well-known that (Z/nZ)∗ is a cyclic group if n = 2, 4, pr or 2pr, where

p is an odd prime and r ≥ 1. However, research on primitive roots for prime moduli

becomes the focus of the research on primitive roots. One of the major questions is

about the distribution of the primitive roots for prime moduli. This question can be

investigated in two perspectives. If we fix prime modulus p, then one can easily see that

the proportion of primitive roots for p in the group of (Z/pZ)∗ is ϕ(p−1)/(p−1), where

ϕ is Euler ϕ-function. Elliott proved that ϕ(p − 1)/(p − 1) has a limiting distribution

function [2], in the sense that limx→∞
1

π(x)
#{p ≤ x : ϕ(p− 1)/(p− 1) ≤ u}, where π(x)

is the number of primes up to x, exists for all real numbers u. This indicates that the

values of ϕ(p− 1)/(p− 1) are asymptotically evenly distributed in the interval [2, x] as

x goes to infinity. If we fix integer a and count the number Pa(x) of prime moduli p up

to x for which a is a primitive root, we are led to the famous Artin’s conjecture.

1. Distribution of Primitive Roots and Artin’s Conjecture

In 1927, Artin conjectured that for any integer a, which is not −1 and not a square,

limx→∞ Pa(x) = ∞. He formulated his conjecture as an asymptotic formula:

Pa(x) ∼
A(a)x

lnx

as x → ∞, where A(a) > 0 is a constant depending on a. A(a) was revised by Heilbronn

in [20] due to the work of D.H. Lehmer.

Although Artin’s conjecture has not been proved unconditionally, there are many

results [3, 5, 6] in favor of the conjecture. The reader may refer to Murty [15] for a

survey of Artin’s conjecture. The closest result in favor of Artin’s conjecture comes from

Hooley [6]. He proved the conjecture under the assumption of the extended Riemann

Hypothesis for Dedekind zeta function over certain Kummerian fields. Hooley also gave

the constants A(a) in his article. Let a = a1a
2
2, where a1 is squarefree. Let h be the

largest integer such that a is an h-th power. Here h is an odd integer since a cannot be

a square. Then

A(a) =

{
A, if a1 ̸≡ 1 mod 4 and h = 1

A
(
1−

∏
q|a1

1
1+q−q2

)
, if a1 ≡ 1 mod 4 and h = 1

where constant A =
∏

q prime

(
1− 1

q(q−1)

)
. If h > 1, A needs to be modified with an

extra factor depending on h and a. One may refer to [6] for more detail.
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Another achievement in favor of Artin’s conjecture is the unconditional result obtained

by Stephens [19], who proved that if N > exp
(
4(lnx ln lnx)

1
2

)
, then

(1)
1

N

∑
a≤N

Pa(x) = A · li(x) +O
(
x/(lnx)D

)
where D > 1 is an arbitrary constant. Note that constant A is the asymptotic average

of the constants A(a) in Hooley’s result. One can substitute Hooley’s formula for Pa(x)

in (1) to get the similar estimate as in (1) except with a weaker error term. So the

unconditional result in (1) is a kind of verification of Hooley’s achievement.

It should be pointed out that Stephens established a connection between the two

counting functions Pa(x) and ϕ(p−1) for primitive roots. Indeed, in his proof, Stephens

found out that

(2)
1

N

∑
a≤N

Pa(x) =
∑
p≤x

ϕ(p− 1)

p− 1
+O

(
x/(lnx)D

)
.

where D > 1 is an arbitrary constant. From this identity, we can see that the asymptotic

even distribution of values of ϕ(p− 1)/(p− 1) for p ∈ [2, x] induces the smooth function

A · li(x) for the average of Pa(x), which is a pattern followed by individual Pa(x) with

a constant factor depending on a. The unconditional result achieved in (1) is possible

thanks to a characteristic function by a sum of Dirichlet characters for a primitive root

a mod p. This creates a chance for interchange of an order of sums of a triple sum in∑
a≤N Pa(x). The properties of sums of Dirichlet characters make it possible to yield

the sum of ϕ(p− 1)/(p− 1) in (2) and to cut the error terms down significantly. These

techniques still work when we consider the distribution of primitive λ-roots below. The

multiplicative property of function ϕ(n) makes it possible to turn the identity in (2) to

(1).

2. Distribution of Primitive λ-roots and Artin’s Conjecture for

Composite Moduli

When (Z/nZ)∗ is not cyclic, there is no primitive root modn. However, the group

always has residue classes that have the maximal order. Carmichael [1] called each

such residue class or any integer in it as a primitive λ-root modulo n. Here λ refers

to Carmichael function λ(n), which is the maximal order of elements in (Z/nZ)∗. It is

well-known that if n = pr11 pr22 · · · prkk where p1, p2, · · · , pk are distinct primes, then λ(n) =

lcm (λ(pr11 ), λ(pr22 ), · · · , λ(prkk )), λ(pr) = 1
2
ϕ(pr) if p = 2 and r ≥ 3, and λ(pr) = ϕ(pr) in

all other cases. When n = 2, 4, pr or 2pr, where p is an odd prime, a primitive λ-root
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modn is a primitive root modn. So primitive λ-root is a generalization of the primitive

root.

Let us explore the distribution of primitive λ-roots. As in the case concerning the

distribution of primitive roots, we come to two counting functions for primitive λ-roots

modn: Na(x) and R(n), where Na(x) is the number of moduli n up to x, for which a

is a primitive λ-root and R(n) is the number of primitive λ-roots modn. Although the

two functions count different parts of primitive λ-roots modulo n, they are connected

through the average of Na(x) in a similar way as the average of Pa(x) in (2) in Stephens’

work [19], including a characteristic function for each pair of primitive λ-root and its

modulus by a sum of Dirichlet characters for the modulus. It is proved [11] that, for

x > e3 and y ≥ exp
(
(lnx)3/4

)
, we have

(3)
1

y

∑
a≤y

Na(x) =
∑
n≤x

R(n)

n
+O

(
x · exp

(
− 5

16
(lnx)1/2

))
.

So the magnitude of
∑

n≤x R(n)/n is the average order of Na(x). Unfortunately

this sum oscillates as x goes to infinity [9] in the sense that there exists a positive

constant c such that
∑

n≤x R(n)/n ≥ cx on a unbounded set of real numbers x; and∑
n≤xR(n)/n = o(x) on another unbounded set of real numbers x. Asymptotically this

oscillation indicates that most individual Na(x) would oscillates between o(x) and cx

for some positive constant c, as x goes to infinity. To be more precise, let us introduce

the exceptional cases first. Let E be the set of integers a such that |a| ≤ 1, or |a| is a

non-trivial power, or |a| is the product of 2 and a square. Then it is proved in [10] that,

for an absolute constant c > 0,

Na(x) ≤


8, if a = −1 or a = b2 for some integer b

c x(lnx)−1/4, if |a| = 2b2 for some integer b

c x(lnx)−1/ϕ(2q), if |a| is a q-th power for some prime q

If a ̸∈ E , it was conjectured that

lim
x→∞

Na(x)/x = 0, and lim
x→∞

Na(x)/x > 0.

This was considered as Artin’t conjecture for composite moduli. The first part of the

conjecture was proved in [10] free of any hypothesis, while the second part was proved

in [13] under assumption of GRH. A conjecture about the value of the lim sup was also

given in [13]. Let

Fq = lim
t→∞

∞∑
j=0

exp (tq−j−1)− 1

exp (tϕ(qj)−1)
.



5

for each prime q, and let α = Πq(1− Fq). It is conjectured that if integer a ̸∈ E , then

lim
x→∞

Na(x)/x = αϕ(|a|)/|a|,

and this limit is attained on an unbounded set of positive real numbers independent of

a ̸∈ E .
Therefore, Artin’s conjecture for composite moduli is not in analogy to Artin’s con-

jecture. Because, in Artin’s conjecture, Pa(x) is proportional to π(x), the number of

prime moduli up x, while in Artin’s conjecture for composite moduli we don’t have that

Na(x) is proportional to [x], the number of moduli up to x. We do not even have a

formula for Na(x). However, the reason behind the oscillations of Na(x) and its average∑
n≤x

R(n)
n

are also interesting. The authors [12] used a probability model in explaining

of the oscillation in Na(x). In the following we will try a heuristic approach to reveal

the mechanism that results in the oscillations. We would like to look at the first mo-

ment of R(n)/n, namely
∑

n≤xR(n)/n. This is not a proof, but rather an outline of the

mechanism.

3. Oscillation in
∑

n≤x R(n)/n

First let us look at a formula for R(n). In the following, we will use p, q and l to

denote primes. We use notation pr∥n to mean that pr is a divisor of n, but pr+1 isn’t.

In [14, 8], it was proved that

(4) R(n) = ϕ(n) ·
∏
q|λ(n)

(
1− 1

q∆q(n)

)
,

where ∆q(n) := #{prime p : pe∥n and qk|λ(pe)} for prime q with qk∥λ(n), except the
case 23∥n and 2∥λ(n), for which ∆2(n) := 1 + #{prime p : p|n}.

Actually ∆q(n) is the number of cyclic subgroups of order qk in the factorization of

(Z/nZ)∗ into a direct product of cyclic subgroups. Although it is not clearly labeled,

exponent k depends on both q and modulus n like ∆q. It should be pointed out that

R(n) is not a multiplicative function. One can easily find many counterexamples for

this. It is proved [7] that R(mn) ≥ R(m)R(n) if m,n > 1 and gcd(m,n) = 1 with the

strict equality holding for infinitely many such pairs of m and n.

Note that R(n)/n = (R(n)/ϕ(n))(ϕ(n)/n). But ϕ(n)/n is a multiplicative function

and has a limiting distribution function w(t) [18] in the sense that limx→∞
1
x
#{n ≤ x :

ϕ(n)/n ≤ t} exists for all t ∈ (0, 1). w(t) is continuous and strictly increasing in (0, 1). So

the values of ϕ(n)/n are asymptotically evenly distributed along the number line. To see
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the oscillation of
∑

n≤x R(n)/n, we just need to turn our attention to
∑

n≤x R(n)/ϕ(n).

Let us denote R(n)/ϕ(n) by r(n).

For the orders for r(n), it is found [8] that limn→∞ r(n) = 1 and limx→∞ r(n) ln lnn =

e−γ, where γ is Euler’s constant. It is not easy to estimate and describe the lower

order of
∑

n≤x r(n). However, if we consider
∑

n≤x | ln r(n)|, the situation will change

dramatically. Although the orders of
∑

n≤x | ln r(n)| may not yield directly the orders for∑
n≤x r(n), we can definitely get something interesting about the distribution of values

of r(n). It can be seen from (4) that

ln r(n) =
∑
q|λ(n)

ln

(
1− 1

q∆q(n)

)
= −

∑
prime q:
∆q(n)=1

1

q
+O(1).

We can drop the condition q|λ(n) in the above sum because ∆q(n) = 1 implies that

q|λ(n). Here O(1) is a quantity in the interval (−c, 0) for some positive constant c.

Thus

(5)
∑
n≤x

| ln r(n)| =
∑
q≤x

1

q

∑
n≤x

∆q(n)=1

1 +O(x).

It is critical to get an accurate estimate of the inner sum in (5). For each integer

n counted by the inner sum, we have ∆q(n) = 1, which implies that qk∥λ(n) for some

positive integer k and qk∥λ(pr) for exactly one prime power pr∥n. So we can write

n = pr · m, where gcd(p,m) = 1 and qk ∤ λ(m). Definitely qk ∤ p′ − 1 for each prime

factor p′ of m. Let us introduce a few notations of the sieve method. Let Pqk be the

set of primes p ≡ 1 mod qk and Pqk(u) :=
∏

p≤u
p∈P

qk

p. In addition, let us use the notation

ln2 x to represent ln ln x and similarly for other iterations of the natural logarithmic

function. We can write the inner sum of (5) as∑
n≤x

∆q(n)=1

1 =
∑
k≥1

∑
n≤x

qk∥λ(n)
∆q(n)=1

1.

Note that qk∥λ(pr) includes two cases: qk = pr−1 (except the case 8∥n) and qk∥p − 1.

The total contribution from the first case to the sum is at most O(x/q2). Thus∑
n≤x

∆q(n)=1

1 =
∑
k≥1

∑
p≤x

qk∥p−1

∑
r≥1

∑
m≤x/pr

(m,P
qk

(x/pr))=1

1 +O

(
x

q2

)
.
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Analysis shows that some of the terms in the above sums are negligible, which can let

us reduce the sums as

(6)
∑
n≤x

∆q(n)=1

1 =
∑
k≥1

∑
p≤x

1
2

qk∥p−1

∑
m≤x/p

(m,P
qk

(x/p))=1

1 +O

(
x ln q

q

)
.

By results of the sieve method [4] and results on primes in arithmetic progression

[8, 16, 17], we have∑
m≤x/p

(m,P
qk

(x/p))=1

1 ≪ x

p

∏
l≤x/p

l≡1 mod qk

(
1− 1

l

)
≪ x

p
exp

(
− ln2 x

qk−1(q − 1)

)
.

Plug the estimate in (6), we have∑
n≤x

∆q(n)=1

1 ≪ x
∑
k≥1

ln2 x

qk
exp

(
− ln2 x

qk(1− 1/q)

)
+O

(
x ln q

q

)
.

Let M be the least integer such that qM > ln2 x. Then M = ln3 x
ln q

−
{

ln3 x
ln q

}
+1, where {y}

represents the fractional part of number y. By straight calculation, it can be deduced

that ∑
qk>ln2 x

ln2 x

qk
exp

(
− ln2 x

qk(1− 1/q)

)
≤

∑
qk>ln2 x

ln2 x

qk
≤ 2

q1−{
ln3 x
ln q }

.

On the other hand,∑
qk≤ln2 x

ln2 x

qk
exp

(
− ln2 x

qk(1− 1/q)

)
≤

∑
qk≤ln2 x

ln2 x
qk

1
2!

(
ln2 x

qk(1−1/q)

)2 ≤ 2

q{
ln3 x
ln q }

.

For any real number y, let ∥y∥ = minn∈Z{|y − n|}. Note that ∥u∥ ≤ 1/2. By (6), we

have ∑
n≤x

∆q(n)=1

1 ≪ x

q∥
ln3 x
ln q ∥

+O

(
x ln q

q

)
≪ x

q∥
ln3 x
ln q ∥

.

By (5), we have

(7)
∑
n≤x

| ln r(n)| ≪
∑
q≤x

x

q1+∥
ln3 x
ln q ∥

+O(x).

It can be seen easily [8] that∑
n≤x

∆q(n)=1

1 ≫
∑

qk>ln2 x

∑
p≤x

1
2

qk∥p−1

x

p
≫ x ln2 x

qM
=

x

q1−{
ln3 x
ln q }

.
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This estimate allows us to bound
∑

n≤x | ln r(n)| from below:

(8)
∑
n≤x

| ln r(n)| ≫
∑
q≤x

x

q2−{
ln3 x
ln q }

+O(x).

The two sums in (7) and (8) are interesting because they provide the source of oscillation

in
∑

n≤x | ln r(n)|. If there are enough primes q such that ∥ ln3 x/ ln q∥ stay away from 0,

even with ∥ ln3 x/ ln q∥ ≫ 1/ ln q, the sum in (7) will be bounded by a constant multiple

of x. On the other hand, if there are enough primes q such that {ln3 x/ ln q} is close to

1, the sum in (8) will be unbounded. Although these ideas are not used directly in the

actual proof, it is proved [8] that on an unbounded set of real numbers x, we have∑
n≤x

| ln r(n)| ≫ x ln6 x,

and on another unbounded set of real numbers x, we have∑
n≤x

| ln r(n)| ≪ x,

although the oscillation is really faint. The oscillations in individual functions Na(x)

were found with more diligent analysis. Some of the ideas explained above are also

involved.
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