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Abstract. We assume that four bond angles of a spatial hexagon
are θ. According to the choice of the four bond angles, we define
the configuration spaces X6(θ), Y6(θ) and Z6(θ). We determine
the topological types of these spaces.
Keyword: polygon space; hexagon; bond angle.

1. Introduction

In [6], we determined the topological type of the configuration space
of spatial pentagons whose two bond angles are θ. In this paper, we
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determine the topological type of the configuration space of spatial
hexagons whose four bond angles are θ.

Let Mn be the configuration space of equilateral polygons in R3.
The seminal paper [7] studied Mn from the viewpoint of symplectic
geometry. After this, many mathematicians studied various aspects of
Mn. We refer to [2] for an excellent exposition with emphasis on Morse
theory.

Recently, mathematicians and chemists are interested in the mathe-
matical models for chemical compounds. (See, for example, [1, 4, 8].)
For some cases, their configuration spaces are subspaces of Mn. The
rule which connects mathematics and chemistry is the following:

Rule 1. Recall that a monocyclic hydrocarbon consists of single bonds
and double bonds. We impose the following rules. We fix θ ∈ (0, π).

(i) The bond angle formed by adjacent single bonds are θ.
(ii) The bond angles of the both ends of a double bond are arbitrary.

Hereafter we consider a monocyclic hydrocarbon which have 6-bonds.

Example 2. Among monocyclic hydrocarbons, the benzene is most
famous. The benzene is defined as the left-end of Figure 1. By Rule
1 (ii), all bond angles of a hexagon are arbitrary. Hence the space of
benzenes can be identified with M6.

Example 3. The cyclohexane is defined as the middle of Figure 1. By
Rule 1 (i), the set of cyclohexanes can be identified with the config-
uration space of equilateral and equiangular hexagon. Recall that [8]
obtained a complete information on the configuration space of these
hexagons.

Example 4. The cyclohexene is defined as the right-end of Figure 1.
By Rule 1 (i) and (ii), the space of cyclohexenes can be identified with
the configuration space of the equilateral hexagons whose first four
bond angles are θ. (See X6(θ) in Definition 5 (i).)

Figure 1. Left: Benzene. Middle: Cyclohexane. Right: Cyclohexene.
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If we forget chemical backgrounds, we have some more ways to im-
pose conditions on the bond angles of a polygon. In this case, we may
regard a polygon as a mechanical linkage. As an example, we consider
the following two more subspaces of M6.

Definition 5. We fix θ ∈ (0, π) and define the spaces X6(θ), Y6(θ) and
Z6(θ) as follows.

(i) We set

X6(θ) := {(v1, . . . , v6) ∈ (R3)6 | the following conditions (a), (b)
and (c) hold}.

Here
(a) v1 = (0, 0, 0), v2 = (1, 0, 0) and v3 = (1− cos θ, sin θ, 0).
(b) ∥vi+1 − vi∥ = 1 for 2 ≤ i ≤ 5 and ∥v1 − v6∥ = 1.
(c) ∠vivi+1vi+2 = θ for 2 ≤ i ≤ 4.
(See the left-end of Figure 2.)

(ii) We set

Y6(θ) := {(v1, . . . , v6) ∈ (R3)6 | the above conditions (a), (b)
and the following condition (d) hold}.

Here
(d) ∠vivi+1vi+2 = θ for 2 ≤ i ≤ 3 and ∠v5v6v1 = θ.
(See the middle of Figure 2.)

(iii) We set

Z6(θ) := {(v1, . . . , v6) ∈ (R3)6 | the above conditions (a), (b)
and the following condition (e) hold}.

Here
(e) ∠vivi+1vi+2 = θ for i ∈ {2, 4} and ∠v5v6v1 = θ.
(See the right-end of Figure 2.)
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Figure 2. Left: An element of X6(θ). Middle: An ele-
ment of Y6(θ). Right: An element of Z6(θ).

Remark 6. (i) The space X6(θ) is the mathematical formulation of
the space which is considered in Example 4.

(ii) The spaces X6(θ), Y6(θ) and Z6(θ) are defined by requiring that
certain four bond angles of a hexagon are θ. In fact, if we require that
four bond angles of a hexagon are θ, then the space we obtain is X6(θ),
Y6(θ) or Z6(θ).

The purpose of this paper is to determine the topological types of
X6(θ), Y6(θ) and Z6(θ). This paper is organized as follows. In §2
we state our main results. The topological types of X6(θ), Y6(θ) and
Z6(θ) are determined in Theorems A, B and C, respectively. In §3 we
apply Morse theory to a robot arm, which is used in later sections. We
prove Theorems A, B and C in §4, 5 and 6, respectively. In §7 we give
conclusions.

2. Main results

Theorem A . The topological type of X6(θ) is given by the following
Table 1, where following to the Schläfli symbol, {6} denotes the regular
hexagon.

θ (0, π
3
) (π

3
, π
2
) (π

2
, 2
3
π) 2

3
π (2

3
π, π)

Topological type #
3
(S1 × S1) #

3
(S1 × S1) S2 {6} ∅

Table 1. The topological type of X6(θ).

Remark 7. The topological types of X6(
π
3
) and X6(

π
2
) are determined

in [4]. In particular, they have singular points.
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Theorem B . The topological type of Y6(θ) is given by the following
Table 2.

θ (0, π
3
) π

3
(π
3
, 2
3
π) 2

3
π (2

3
π, π)

Topological type (S1 × S1)⨿ (S1 × S1) S1 × U S1 × S1 S1 ∅

Table 2. The topological type of Y6(θ).

Here we define U as the left of Figure 3.
Theorem C . The topological type of Z6(θ) is given by the following
Table 2.

θ (0, π
3
) (π

3
, π)

Topological type S1 × V S1 × V

Table 3. The topological type of Z6(θ).

Here we define V as the right of Figure 3.

Figure 3. Left: U . Right: V .

Remark 8. The space Z6(
π
3
) has a complicated singularity. See §7 for

more details.

3. Morse theory of a robot arm

We define
Mn(θ) :=

{
(a1, . . . , an) ∈ (S2)n | the following conditions (I) and (II) hold

}
.

Here
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(I) a1 = (1, 0, 0) and a2 = (− cos θ, sin θ, 0).
(II) ⟨ai, ai+1⟩ = − cos θ (1 ≤ i ≤ n − 1), where ⟨, ⟩ denotes the

standard inner product on R3.
We also define

Nn+1(θ) := {(v1, . . . , vn+1) ∈ (R3)n+1 | the following conditions (III)
(1)

(IV) and (V) hold}.

Here
(III) v1 = (0, 0, 0), v2 = (1, 0, 0) and v3 = (1− cos θ, sin θ, 0).
(IV) ∥vi+1 − vi∥ = 1 for 1 ≤ i ≤ n.
(V) ∠vivi+1vi+2 = θ for 1 ≤ i ≤ n− 1.

Lemma 9. We have the following homeomorphisms α and β:

(S1)n−2 α−−−→∼= Mn(θ)
β−−−→∼= Nn+1(θ). (2)

Proof. First, we construct α. From an element

(eiϕ1 , · · · , eiϕn−2) ∈ (S1)n−2,

we construct the element (a1, · · · , an) ∈ Mn(θ) as follows: In the pro-
cess of constructing ai, we also construct the elements ni ∈ S2 such
that ⟨ai, ni⟩ = 0. We set

ai+2 := − (cos θ)ai+1 + (sin θ cosϕi)ni+1 + (sin θ sinϕi)ai+1 × ni+1

(3)

and

ni+2 := − (sin θ)ai+1 − (cos θ cosϕi)ni+1 − (cos θ sinϕi)ai+1 × ni+1,
(4)

where ai+1 × ni+1 denotes the cross product.
We set

a1 = (1, 0, 0), n1 = (0, 1, 0)

a2 = (− cos θ, sin θ, 0) and n2 = (− sin θ,− cos θ, 0).

From (3) and (4) for i = 1, we obtain a3 and n3. Next from (3) and
(4) for i = 2, we obtain a4 and n4. Repeating this process, we obtain
ai and ni for 1 ≤ i ≤ n. Now we define α by

α(eiϕ1 , · · · , eiϕn−2) = (a1, · · · , an).

From the construction, α is a diffeomorphism.
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Second, we construct β. For (a1, . . . , an) ∈ Mn(θ), we set

vi :=


(0, 0, 0), if i = 1,
i−1∑
q=1

aq, if 2 ≤ i ≤ n+ 1.

It is clear that (v1, . . . , vn+1) ∈ Nn+1(θ). We define β by

β(a1, . . . , an) = (v1, . . . , vn+1). (5)

Then from (5), β is a homeomorphism. □

Definition 10. (i) We define the homeomorphism

T : (S1)n−2 → Nn+1(θ)

by T := β ◦ α.
(ii) We define the function

fn+1,θ : Nn+1(θ) → R

by
fn+1,θ(v1, . . . , vn+1) := ∥vn+1∥.

Note that
f−1
6,θ (1) = X6(θ). (6)

The following Lemmas 11 and 12 are keys to proving Theorem A.

Lemma 11. (i) We define the function

g : (S1)3 × (0, π) → R (7)

by
g(eiϕ1 , eiϕ2 , eiϕ3 , θ) = (f6,θ ◦ T )(eiϕ1 , eiϕ2 , eiϕ3)− 1.

Then g−1(0) is a manifold.
(ii) We define the function h : (S1)3 × (0, π) → R by

h(eiϕ1 , eiϕ2 , eiϕ3 , θ) = θ.

Let h̄ be the restriction of h to g−1(0): h̄ := h|g−1(0) . Then the critical
points of h̄ are given by the following Table 4, , where “number” means
the number of critical points.
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critical value number index degeneracy
2
3
π 1 3 non-degenerate
π
2

3 2 non-degenerate
π
3

∞
�
�
� degenerate

Table 4. The critical points of h̄.

Proof. In [4, Proposition 12], similar assertions are proved in detail.
The key of the proofs are as follows.

(i) Using the implicit function theorem, we obtain (i).
(ii) We need to determine maximal elements and minimal elements

the critical point of h under the restriction g = 0. Then using the
method of Lagrange multiplier, we obtain (ii). □

Using Table 4, we can determine the topological type of X6(θ) for
π
3
< θ < π. (See §4 for more details.) On the other hand for the case

0 < θ < π
3
, we need the following information.

Lemma 12. Assume that 0 < θ < π
3
. Then we have the following:

(i) The critical points of f6,θ are given by the following Table 5.

critical value number index degeneracy
√
13− 12 cos θ 1 3 non-degenerate

3− 2 cos θ 1 2 non-degenerate
√
7− 10 cos θ + 6 cos 2θ − 2 cos 3θ 2 2 non-degenerate

√
9− 12 cos θ + 4 cos 2θ 3 1 non-degenerate

1− 2 cos θ + 2 cos 2θ 1 0 non-degenerate

Table 5. The critical points of f6,θ for 0 < θ < π
3
.

(ii) Let ξ be a critical value in Table 5. Then we have ξ > 1 if and
only if ξ is either

√
13− 12 cos θ, 3− 2 cos θ or

√
7− 10 cos θ + 6 cos 2θ − 2 cos 3θ.

Proof. (i) Since we can write f6,θ ◦ T explicitly, we obtain the lemma
from direct computations.

(ii) Using the fact that 0 < θ < π
3
, it is easy to prove the item. □
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The following Proposition 13 is a key to proving Theorem B.

Proposition 13. The topological type of f−1
5,θ (2 sin

θ
2
) is given by the

following Table 6.

θ (0, π
3
) π

3
(π
3
, 2
3
π) 2

3
π (2

3
π, π)

Topological type S1 ⨿ S1 U S1 one point ∅

Table 6. The topological type of f−1
5,θ (2 sin

θ
2
).

In order to prove Proposition 13, we prove the following Lemmas 14
and 15.

Lemma 14. (i) We define the function

g1 : (S
1)2 × (0, π) → R (8)

by

g1(e
iϕ1 , eiϕ2 , θ) = (f5,θ ◦ T )(eiϕ1 , eiϕ2)− 2 sin

θ

2
.

Then g−1
1 (0) is a manifold.

(ii) We define the function h1 : (S
1)2 × (0, π) → R by

h1(e
iϕ1 , eiϕ2 , θ) = θ.

Let h̄1 be the restriction of h1 to g−1
1 (0): h̄1 := h1|g−1

1 (0) . Then the
critical points of h̄1 are given by the following Table 7.

critical value number index degeneracy
2
3
π 1 2 non-degenerate
π
3

3 1 non-degenerate

Table 7. The critical points of h̄1.

Proof. We can prove the lemma in the same way as in Lemma 11. □

Similarly to Table 5, we also need the following:

Lemma 15. Assume that 0 < θ < π
3
. Then the critical points of f5,θ

are given by the following Table 6.
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critical value number index degeneracy

4 sin θ
2

1
�
�
� degenerate

4 cos θ sin θ
2

1 1 non-degenerate

4 sin2 θ
2

2 1 non-degenerate

0 2 0 non-degenerate

Table 8. The critical points of f5,θ for 0 < θ < π
3
.

Proof. By computing f5,θ ◦T , we can prove the lemma in the same way
as in Lemma 12. □

Proof of Proposition 13. Note that we have the homeomorphism

T |h−1
1 (θ) : h

−1
1 (θ) → f−1

5,θ (2 sin
θ

2
).

(i) The case π
3
< θ ≤ π. By Table 7, we have max h̄ = 2

3
π. Hence

Table 6 is true for 2
3
π ≤ θ ≤ π. Moreover, applying the Morse lemma

to Table 7, we see that Table 6 is true for π
3
< θ < 2

3
π.

(ii) The case 0 < θ < π
3
. Note that in Table 8, we have

4 sin2 θ

2
< 2 sin

θ

2
< 4 cos θ sin

θ

2
.

We set

H := f−1
5,θ [2 sin

θ

2
, 4 sin

θ

2
].

Note that

f−1
5,θ (2 sin

θ

2
) = ∂H. (9)

We study the handle decomposition of H.
In Table 8, the critical point which gives the global maximum is

degenerate. Nevertheless, using [3, Lemma 1], there is a diffeomorphism

f−1
5,θ [ξ, 4 sin

θ

2
] ∼= D2, (10)

for all ξ ∈ (4 cos θ sin θ
2
, 4 sin θ

2
).

Using (10) and Table 8, H has a form

H = D2 ∪ (D1 ×D1). (11)
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That is, H is a Möbius strip or an annulus. Below we show that H is in
fact an annulus: Note that H is a subspace of N5(θ). Moreover, N5(θ)
is homeomorphic to (S1)2 by Lemma 9. Hence (11) in fact implies that

H = S1 ×D1. (12)

Now we have from (12) that ∂H = S1⨿S1. Then using (9), we have

f−1
5,θ (2 sin

θ

2
) = S1 ⨿ S1.

(iii) The case θ = π
3
. Note that in this case, we have 2 sin θ

2
= 1.

Consider the equation

f5,θ ◦ T (eiϕ1 , eiϕ2) = 1, (13)

with variables in ϕ1 ∈ [0, 2π] and ϕ2 ∈ [−π, π].
We define C1, C2 and C3 as follows.

C1 ={(ϕ1, ϕ2) ∈ [0, 2π]× [−π, π] | ϕ2 = −2 arctan
(
2 cot

x

2

)
},

C2 ={(ϕ1, ϕ2) ∈ [0, 2π]× [−π, π] | ϕ1 = 0}

and

C3 ={(ϕ1, ϕ2) ∈ [0, 2π]× [−π, π] | ϕ2 = 0} :

It is easy to see that the complete solution of (13) is given by C1 ∪
C2 ∪ C3. Now since the figure of C1 ∪ C2 ∪ C3 is homeomorphic to U ,
Proposition 13 holds for θ = π

3
. □

4. Proof of Theorem A

Proof of Theorem A.
(i) The case for π

2
< θ < π. The case is clear from Table 4.

(ii) The case for π
3
< θ < π

2
. Table 4 tells us that X6(θ) is obtained

from S2 by attaching three handles. Equivalently, X6(θ) = #
3
(S1×S1).

(iii) The case for 0 < θ < π
3
. In Table 5, there is only one critical

point whose index is 3. Hence X6(θ) is connected. Then using Table
5 and Lemma 12 (ii), X6(θ) is obtained from S2 by attaching three
handles. Equivalently, X6(θ) = #

3
(S1 × S1). □

Remark 16. The above proof was outlined in [5, §6].
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5. Proof of Theorem B

Lemma 17. We have the following homeomorphism:

Y6(θ) ∼= S1 × f−1
5,θ (2 sin

θ

2
).

Proof. We define the S1-action on Y6(θ) as follows: For (v1, . . . , v6) ∈
Y6(θ), let v6 rotate about the diagonal v1v5.

Since
∥v1 − v5∥ = 2 sin

θ

2
,

we have
Y6(θ)/S

1 = f−1
6,θ (2 sin

θ

2
).

Hence there is a principal bundle

S1 → Y6(θ) → f−1
5,θ (2 sin

θ

2
).

Since f−1
5,θ (2 sin

θ
2
) is a one-dimensional space, the bundle is trivial. □

Proof of Theorem B. Combining Lemma 17 and Corollary 13, we ob-
tain Theorem B. □

6. Proof of Theorem C

Lemma 18. Let P be the fiber product of the following diagram:
P −−−→ N4(θ)y yf4,θ

N4(θ)
f4,θ−−−→ R

(14)

Then there is a homeomorphism
Z6(θ) ∼= S1 × P.

Proof. We define the S1-action on Z6(θ) as follows: The S1 rotate
the quadrilateral v1v4v5v6 about the diagonal v1v4. Then there is a
principal bundle

S1 → Z6(θ) → Z6(θ)/S
1. (15)

Since Z6(θ)/S
1 is a one-dimensional space, (15) gives a homeomorphism

Z6(θ) ∼= S1 × Z6(θ)/S
1. (16)

Lemma 19. We assume that θ ̸= π
3
. Then there is a homeomorphism

Φ : P → Z6(θ)/S
1.
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Proof of Lemma 19. We use v1, v2 and v3 as in Definition 5 (i)(a). Take
an element

((v1, v2, v3, w4), (v1, v2, v3, v4)) ∈ P.

This element is illustrated as the left-end and middle figures of the
following Figure 4. Let ζ be an orientation-preserving isometry which
satisfies the following conditions:

ζ(w4) = v1 and ζ(v1) = v4. (17)
Then we define Φ by

Φ((v1, v2, v3, w4), (v1, v2, v3, v4)) = (v1, v2, v3, v4, ζ(v2), ζ(v3)). (18)
Here the right-hand side of (18) is illustrated as the right-end figure of
the following Figure 4.

v1 v2

v3

w4

v1 v2

v3

v4

θ

θ

θ

θ

v2

v3

v4 = ζ(v1)

θ

θ

θ

θ=⇒

v1 = ζ(w4)

ζ(v3)

ζ(v2)

Figure 4. The homeomorphism Φ : P → Z6(θ)/S
1.

Although the freedom of the choice of ζ is S1, the map Φ in (18) is
well-defined as a map to Z6(θ)/S

1. We shall prove that Φ is a homeo-
morphism.

Surjectivity: Since we are assuming θ ̸= π
3
, it is clear that Φ is

surjective. (See §7 for the case θ = π
3
.)

Injectivity: Assume that two elements of P satisfy
Φ((v1, v2, v3, w4), (v1, v2, v3, v4)) = Φ((v1, v2, v3,W4), (v1, v2, v3, V4)).

(19)
First, it is clear from (18) that

v4 = V4. (20)
Second, choosing orientation-preserving isometries ζ and η, we con-

struct quadrilaterals ζ(v1)ζ(v2)ζ(v3)ζ(w4) and η(v1)η(v2)η(v3)η(W4),
where we choose ζ and η so as to satisfy the following conditions (see
(17)):

ζ(v1) = η(v1) = v4, and ζ(w4) = η(W4) = v1. (21)
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Then (19) implies that these quadrilaterals overlap under a rotation
about the common side v1v4, where we have v4 = V4 by (20). More
precisely, there exists an orientation-preserving isometry ρ which sat-
isfies the following conditions:

ρ(v1) = v1 and ρ(v4) = v4 (22)

and

ρ(ζ(v2)) = η(v2) and ρ(ζ(v3)) = η(v3). (23)
From (21), (22) and (23), we have

(ρ ◦ ζ)(v2 − v1) = η(v2 − v1) and (ρ ◦ ζ)(v3 − v2) = η(v3 − v2).

Since v2 − v1 and v3 − v2 are linearly independent vectors, we have
ρ ◦ ζ = η.

Then using (21) and (22), we have

η(w4) = (ρ ◦ ζ)(w4) = v1 = η(W4).

Hence we obtain w4 = W4. This completes the proof of the fact that
Φ is injective.

Now we have proved that Φ in (18) is a homeomorphism. Hence the
proof of Lemma 19 completes. □

Now combining (16) and Lemma 19, we complete the proof of Lemma
18. □
Lemma 20. There is a homeomorphism

P ∼= V,

where V is defined in Figure 3.

Proof. It is easy to see that
(f4,θ ◦ T )(eiϕ1) = c1 + c2 cosϕ1 (24)

for some c1 > 0 and c2 < 0. Let µ : S1 → R be the height function.
Then (24) tells us that f4,θ is essentially the same as µ. Hence we may
redefine P in Lemma 18 as the fiber product of the following diagram:

P −−−→ S1y yµ

S1 µ−−−→ R
Then we can write P as follows.

P = {(ξ, ξ) | ξ ∈ S1} ∪ {(ξ, τ(ξ)) | ξ ∈ S1}, (25)
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where for ξ = (x1, x2), we set τ(ξ) := (−x1, x2). Since the right-hand
side of (25) is homeomorphic to V , Lemma 20 holds. □
Proof of Theorem C. The theorem follows from Lemmas 18 and 20. □

7. Conclusions

Theorem C does not hold for the case θ = π
3
. The reason is that Φ

in Lemma 19 is not surjective. In fact, we set

W :=
{
(v1, . . . , v6) ∈ Z6

(π
3

)
| v4 = v1

}
.

Then W is not in the image of Φ. Note that we have a homeomorphism
W ∼= SO(3). Then we pose the following:
Question 21. Does the following homotopy equivalence hold?

Z6

(π
3

)
≃ (S1 × V ) ∨ SO(3).
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