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Abstract

In this paper, a method for finding some or all finite eigenvalues of a singular real
symmetric matrix pencil (A, B) is presented, where A is a symmetric tridiagonal matrix
and B a diagonal matrix with b1 > 0 and bi ≥ 0, i = 2, 3, ..., n. The approach is to first
reduce pencil (A,B) to a real symmetric positive definite pencil (Ã, B̃) then compute
some or all eigenvalues of pencil (A, B) via eigenvalues of pencil (Ã, B̃). This method
is more efficient if the dimension of pencil (A,B) is higher than the dimension of pencil
(Ã, B̃).
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1 Introduction

Consider the generalized real symmetric eigenvalue problem:

Ax = λBx (1)

where A, B are real symmetric and B is positive semidefinite. By MDR reduction [1], A
can be reduced to a symmetric tridiagonal matrix and B to a positive semidefinite diagonal
matrix simultaneously with either B = diag(B1, O1, B2, O2, ..., Br, Or), a block diagonal
matrix, orB = diag(B1, O1, B2, O2, ..., Br, Or, Br+1), whereB

′
is are positive definite diagonal

matrices, and O′
is are zero matrices. In practice, this is what one will do first, then solve the

reduced eigenvalue problem. Hence, we will assume A is real symmetric tridiagonal and B
diagonal. With zero matricex Oi ∀i, (1) is called singular symmetric generalized eigenvalue
problem.

There are few efficient algorithms for solving (1), such as Fix Heiberger [3], Bunse Gerst-
ner [1], and QZ method [4]. However, these methods are not parallel methods which cannot
take advantage of multiprocessor machines. Another disadvantage of these methods is that
they cannot be used to compute some eigenpairs.

In [6], A homotopy method is presented to solve the problem. The approach is to first
reduce pencil (A,B) to a real symmetric positive definite pencil (Ã, B̃), that is, Ã is real
symmetric tridiagonal, and B̃ positive definite diagonal, then use the homotopy method
to compute all or some eigenpairs of pencil (Ã, B̃). The method is fully parallel and very
efficient to compute all or some eigenpairs of (A,B), but it seems a little expensive if only
some or all eigenvalues are needed. The reason is that reducing pencil (A,B) to a real
symmetric positive definite pencil (Ã, B̃), eigenvectors of pencil (A,B) and (Ã, B̃) must be
computed.

In [7], A homotopy method is presented to find some or all finite eigenvalues of pencil
(A,B). The method is more efficient than [6] since no eigenvectors are computed. However,
the method is not able to reduce the pencil to a lower dimensional pencil (Ã, B̃). When n,
the dimension of pencil (A,B) is much larger than m, the number of finite eigenvalues, the
method may not be a good choice.

In this paper, we present a method for finding some or all finite eigenvalues of (1) by
first eliminating the zero block matrices on the diagonal of B. The new approach is more
efficient since the dimension of reduced pencil could be much smaller than the original one.
It is also a fully parallel method and enjoys the flexibility of finding some or all eigenvalues
of the pencil.

In section 2, we will show how to reduce (A,B) to a lower dimensional pencil (Ã, B̃) and
show how the eigenvalues are related. In section 3, we will outline the method to compute
some or all eigenvalues of pencil (A,B) from pencil (Ã, B̃).

2 Analysis

After MDR reduction, B must be either the form B = diag(B1, O1, B2, O2, ..., Br, Or) or
B = diag(B1, O1, B2, O2, ..., Br, Or, Br+1), where B

′
is are positive definite diagonal matrices,
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and O′
is are zero matrices. The reason that B′

is are not further reduced to identity matrices
is to keep the high accuracy since B′

is may be ill-conditioned.
Assume in (1)

A =


α1 β2

β2 α2 β3

. . . . . . . . .

βn−1 αn−1 βn

βn αn

 (2)

If βi = 0 for some i, 2 ≤ i ≤ n, then Rn can clearly be decomposed into two comple-
mentary subspaces invariant under A. Thus the generalized eigenvalue problem Ax = λBx
is decomposed in an obvious way into two smaller subproblems. Hence, we will assume that
each βi ̸= 0. That is, A is unreduced.

In this paper, we will concentrate on two special cases, one is B = diag (B1, O1) and
other one is B = diag (B1, O1, B2). The general cases can be handled with the same ideas.

If B = diag(B1, O1), we partition A as following:

A =

(
A1 ∗
∗∗ A0

1

)
(3)

If B = diag(B1, O1, B2), we partition A as following:

A =

 A1 ∗
∗∗ A0

1 ∗
∗ A2

 , (4)

where dim(O1) = dim(A0
1), and dim(Bi) = dim(Ai), i = 1, 2.

Since B is singular, pencil (A,B) has fewer than n finite eigenvalues.
Let deg(p(λ)) denote the degree of the polynomial p(λ), (M)1 be the matrix obtained

from M by deleting its last row and last column, and (M)1 be the matrix obtained from M
by deleting its first row and first column.

Theorem 2.1 Let n(A,B) denote the number of finite eigenvalues of pencil (A,B). If
detA0

1 ̸= 0, then n(A,B) = rank(B1) for the case in (3) and n(A,B) = rank(B1)+rank(B2)
for the case in (4).

Proof:
Case 1, Let B = diag (B1, O1) and rank(B1) = m. By simple computation, wee see that

det(A− λB) = det(A1 − λB1)detA
0
1 − β2

m+1det(A1 − λB1)1det(A
0
1)

1.

Since A1 is unreduced and B1 positive definite, det(A1−λB1) = 0 has m distinct eigenvalues.
So deg(det(A1 − λB1)) = m.
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deg(det(A− λB)) = deg(det(A1 − λB1)det(A
0
1))

= deg(det(A1 − λB1)) since det(A0
1) ̸= 0,

= rank(B1).

Case 2, Let B = diag (B1, O1, B2), and T = diag (B1, O1), then B = diag (T,B2).
Assume dim(T ) = k. Let M denote the k × k leading principal submatrix of A, then

det(A− λB) = det(M − λT )det(A2 − λB2)− β2
k+1det(M − λT )1det(A2 − λB2)

1.

Since A2 is unreduced and B2 positive definite, det(A2 − λB2) = 0 has rank(B2) many
distinct eigenvalues. Hence, deg(det(A2 − λB2)) = rank(B2).

n(A,B) = deg(det(M − λT )) + deg(det(A2 − λB2))
= rank(T ) + rank(B2), according to the case 1,
= rank(B1)) + rank(B2), since rank(T ) = rank(B1).

Let βk+1 be an off-diagonal element of A1 or A2 or the off-diagonal element of A which
joins block matrices A1 and A0

1 or A0
1 and A2, then let

D =

(
D1 0
0 D2

)
, (5)

where

D1 =


α1 β2

β2 α2 β3

. . . . . . . . .

βk−1 αk−1 βk

βk αk

 , D2 =


αk+1 βk+2

βk+2 αk+2 βk+3

. . . . . . . . .

βn−1 αn−1 βn

βn αn

 ,

and then let

B =

(
B1 0
0 B2

)
with dim(Bi) = dim(Di), i = 1, 2.

Let A(t) = (1− t)D + tA, t ∈ [0, 1] and

p(t) = det(A(t)− λ(t)B). (6)

Theorem 2.2 Let D and p(t) be given in (5) and (6), let λ(t) be a eigenvalue curve of
p(t) = 0, then

i. λ(t) is simple for any t ∈ (0, 1].
ii. λ(t) is either constant or strictly monotone.

Proof: See [7]
Let ξ1, ξ2, ... , ξm be eigenvalues of pencil (D,B), λ1(t), λ2(t), ... , λm(t) be eigenvalues

of pencil (A(t), B). From Theorem 2.2, clearly,λi(0) = ξi, and λ1(t) < λ2(t) < ... < λm(t)
for t ∈ (0, 1]. With the results from Theorem 2.2, one can get the following result.
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Theorem 2.3 If ξ′is are distinct and λ(t) is not constant, then either ξi−1 < λi(t) < ξi, or
ξi < λi(t) < ξi+1 for t ∈ (0, 1].

Proof: See [7]

Theorem 2.4 Let B = diag(B1, O1) and λ(A,B) denote all eigenvalues of pencil (A,B).
(i). If detA0

1 = 0, then λ(A,B) = λ((A1)1, (B1)1).
(ii). If det(A0

1)
1 = 0, then λ(A,B) = λ(A1, B1).

(iii). If detA0
1 ̸= 0 and det(A0

1)
1 ̸= 0, then λi ∈ (ξi−1, ξi) or λi ∈ (ξi, ξi+1), ∀ i. where

λ1 < λ2 < ... < λm are eigenvalues of pencil (A,B), and ξ1 < ξ2 < ... < ξm eigenvalues of
pencil (A1, B1).

Proof:
i. If detA0

1) = 0, then det(A0
1)

1 ̸= 0 by Cauchy interlacing theorem [8]. Therefore,
det(A− λB) = det(A1 − λB1)detA

0
1 − β2

m+1det(A1 − λB1)1det(A
0
1)

1 = 0 impels

det(A− λB) = 0 ⇐⇒ det(A1 − λB1)1det(A
0
1)

1 = 0 since detA0
1) = 0

⇐⇒ det(A1 − λB1)1 = 0 since det(A0
1)

1 ̸= 0
⇐⇒ det((A1)1 − λ(B1)1) = 0.

Therefore,λ(A,B) = λ((A1)1, (B1)1).

ii. If det(A0
1)

1 = 0, then det(A0
1) ̸= 0 by Cauchy interlacing theorem [8].

det(A− λB) = det(A1 − λB1)detA
0
1 − β2

m+1det(A1 − λB1)1det(A
0
1)

1 = 0 impels

det(A− λB) = 0 ⇐⇒ det(A1 − λB1)detA
0
1 = 0 since det(A0

1)
1 = 0

⇐⇒ det(A1 − λB1) = 0 since det(A0
1) ̸= 0

Therefore, λ(A,B) = λ(A1, B1).

iii. By Theorem 2.1, n(A,B) = n(D,B) = n(A1, B1) = rank(B1). Since A1 is
unreduced symmetric traditional and B1 is positive definite, pencil (A1, B1) has exactly
m = rank(B1) many distinct eigenvalues. Since det(D − λB) = det(A1 − λB1)det(A

0
1) and

det(A0
1) ̸= 0, λ(D,B) = λ(A1, B1) = {ξ1, ξ2, ..., ξm }.

By Theorem 2.3, λi = λi(1) ∈ (ξ(i−1), ξi) or λi = λi(1) ∈ (ξ(i), ξ(i+1)),∀ i.

Theorem 2.4 basically shows the relationships between pencil (A,B) and pencil (A1, B1)
and what one needs to do to compute some or all eigenvalues of pencil pencil (A,B) via
pencil (A1, B1).

3 Algorithm

Based on Thereom 2.4, some or all eigenvalues of pencil (A,B) can be computed with
the following steps.

Case I. B = diag (B1, O1).
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If detA0
1 = 0, then λ(A,B) = λ((A1)1, (B1)1) according to Theorem 2.4. Many fully

parallel methods, such as Bisection [8], Divide-Conquer [2], and Homotopy [5] can be applied
on ((A1)1, (B1)1) to find all eigenvalues. Clearly, dimension of ((A1)1, (B1)1) is smaller than
the dimension of (A,B) so it takes less time to find some or all eigenvalues.

If det(A0
1)

1 = 0, then λ(A,B) = λ(A1, B1) according to Theorem 2.4. Again, many
fully parallel methods, such as Bisection, Divide-Conquer, and Homotopy can be applied on
(A1, B1) to find some or all eigenvalues. Clearly, dimension of (A1, B1) is smaller than the
dimension of (A,B) so it also takes less time to find some or all eigenvalues.

If detA0
1 ̸= 0 and det(A0

1)
1 ̸= 0, then λi ∈ (ξi−1, ξi) or λi ∈ (ξi, ξi+1), ∀ i, where λ1 <

λ2 < ... < λm are eigenvalues of pencil (A,B), and ξ1 < ξ2 < ... < ξm eigenvalues of pencil
(A1, B1) according to Theorem 2.4. First, we apply fully parallel methods, such as Homotopy
[5], to find all eigenvalues of (A1, B1). Since the eigenvalues of (A,B) are separated by the
eigenvalues of (A1, B1), we may apply an iterative method, such as, Newton, or Laguerre
method [4] to compute eigenvalues of (A,B) on each interval (ξi−1, ξi) or (ξi, ξi+1). Since λi

can be computed independently on each interval, the method is fully parallel.
Case II. B = diag (B1, O1, B2).
First, we form an initial matrix pencil. Assume βk+1 is the off diagonal element of A that

joins A0
1 and A2. Let

D =

(
D1 0
0 A2

)
where D1 is k × k leading principal submatrix of A,

then

A(t) = (1− t)D + tA =

(
D1 tβk+1

tβk+1 A2

)
.

Let p(t) be given in (6) and λ(t) be an eigenvalue curve of p(t) = 0, then the eigenvalues
of (A(t), B), ∀ t are separated by the eigenvalues of (D,B) by Theorem 2.3. Since λ(A,B) =
λ(A(1), B) so eigenvalues of (A,B) are separated by the eigenvalues of (D,B). If we find all
eigenvalues of (D,B), then we can use an iterative method to find all eigenvalues of (A,B).
The eigenvalues of (D,B) are the eigenvalues of (A2, B2) and the eigenvalues of (D1, B̂),
where B̂ = diag(B1, O1). The fully parallel methods, such as Bisection, Divide-Conquer,
and Homotopy, can be used to solve (A2, B2). (D1, B̂) is just the Case I above.

4 Conclusion

When eigenvalues and corresponding eigenvectors of pencil (A,B) are needed, [6] is a
good method to use. When only eigenvalues of (A,B) are needed and the dimensions of Oi

are not too big, then the method in [7] is a good choice. When the dimension of pencil (A,B),
is much higher than the number of finite eigenvalues, and dimensions of some Oi are much
higher, then the method presented here is a better choice. It is showed how (A,B) can be
reduced to a dimension much smaller positive definite pencil with very little computations.
The eigenvalue relationships between these two pencils are established. Since the eigenvalues
of pencil (A,B) are either same as those of (Ã, B̃), or strictly separated by the eigenvalues
of (Ã, B̃), all or some eigenvalues of (A,B) can be computed on each interval so that the
method is fully parallel in nature. Since the dimension of pencil (A,B) is given and the
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number of finite eigenvalues can be computed easily by using Theorem 2.1, it is easy to see
if the method in [7] or this method should be used.
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