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Abstract
   This paper explores recent advancements in utilizing the dynamic 
programming approach to determine optimal stubbornness in 
professional soccer matches. Traditional discrete methods often 
become challenging due to the curse of dimensionality. To address 
this, we employ a stochastic control framework to maximize a soccer 
player's objective function, with goal dynamics expressed by a 
stochastic dierential equation. Solving a high-dimensional Hamilton-
Jacobi-Bellman (HJB) equation numerically is very complicated. As 
a solution, a Feynman-type path integral method is proposed as a 
more ecient alternative.
Key words: Stochastic Dierential Equations; Stochastic Control; 
Sports Analytics.
Introduction
   Soccer is fundamentally a team sport, but evaluating the quality of 
individual players is just as crucial as assessing team performance. 
A player's quality is typically represented as a single numeric value, 
which helps answer questions like identifying the best player or 
comparing players' abilities. Such inquiries are relevant to fans, 
players to build their strategies, team management during contract 
negotiations, and other stakeholders [5]. In soccer, player rankings 
are traditionally based on the performance observed during a double 
round robin tournament, where every team competes twice against 
every other team, once at home and once away. However, conducting 
a complete round robin tournament is often unrealistic. If not all 
teams have faced each other, it is possible that the top-ranked team 
might have beneted from a relatively easier schedule, which could 
also skew evaluations of its players [19].
   Ranking has become a common feature of modern society, evident 
in everything from league tables for schools and universities to top 
ten lists of movies, books, and songs. This fascination with rankings
is even more pronounced in sports. In fact, the essence of professional 
sports lies in determining the rankings of competitors. Soccer leagues 
worldwide operate with this goal, where the team or player ranked 
rst at the season's end is crowned the champion. This paper explores 
various methods and challenges associated with developing optimal 
strategies for players to achieve higher rankings in professional 

soccer. The two primary objectives for improving player ratings are 
to acknowledge past performance and predict future success [10].
   The key distinction between these two objectives lies in the 
consideration of randomness when predicting future performance 
versus rewarding past achievements. When forecasting future 
performance, it is essential to account for the signicant role that white 
noise plays in a competitor's results, particularly in goal-scoring. 
Due to this inherent variability, predictions about future performance 
should anticipate some degree of regression to the mean, where 
players who have either outperformed or underperformed are likely 
to move closer to average performance levels over time [10]. To 
address this challenge, a stochastic control approach is applied, 
where each player is assigned an objective function that incorporates 
a state variable, such as goal dynamics, and control parameters 
like stubbornness [14, 20]. Players can monitor the complete goal 
dynamics, which are modeled using a stochastic differential equation 
(SDE). The primary goal for each player is to optimize their utility 
while adhering to the constraints imposed by the goal dynamics [13, 
22].
Monte Carlo Approach
   This method serves as a natural tool for analyzing goal dynamics, 
as it can handle models with numerous state variables and is 
particularly eective for calculating path-dependent expectations. In 
stochastic goal dynamics models, the likelihood of scoring a goal 
at a given continuous time is governed by a single-variable diusion 
process. As a result, even when computing expectations based solely 
on the terminal condition of the process, deterministic approaches 
that rely on discretizing the partial dierential equation (PDE) 
can be computationally intensive [4]. For certain path-dependent 
expectations, deterministic techniques can still be applied by 
introducing an additional state variable, which, however, increases 
the complexity.
   Recent advancements in Monte Carlo simulation have sparked 
signicant interest in these techniques. Variance reduction methods, 
adapted to diusion processes by Newton (1994) [12], enable Monte 
Carlo approaches to compete eectively with deterministic methods, 
even for low-dimensional scenarios like the one in this application.
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The technique of importance sampling involves adjusting the 
process (through modications to the drift coecient) to focus on 
regions that contribute most to the desired expectation. Using 
Girsanov's transformation, appropriate weighting is applied to 
account for changes in the drift coecient. The adjustment to the drift 
is informed by an initial estimate of the expectation [8, 24]. Two 
primary approximations are typically employed: the large deviation 
approximation, which is particularly suitable for computing dynamics 
far from the goal, and a small-noise expansion of the stochastic 
volatility model around the simpler Gaussian Black-Scholes 
framework. It is well established that the latter signicantly enhances 
the accuracy of the Monte Carlo estimator [13, 22].
Stochastic Control
   This approach eectively addresses the stochastic dierential equation 
(SDE) associated with the soccer player's objective function. 
Utilizing dynamic programming, the methodology derives a 
variational inequality for the value function, which takes the form of 
a second-order nonlinear partial dierential equation (PDE) of elliptic, 
parabolic, or ergodic type [1, 2]. The solutions to these equations 
yield the optimal level of stubbornness in feedback form, meaning the 
optimal stubbornness depends on the system's current goal dynamics 
[3]. However, the value function is often not suciently smooth to 
satisfy the dynamic programming equation in a strong sense [9, 21]. 
Consequently, a weak solution formulation becomes necessary, with 
the concept of viscosity providing a robust framework well-suited for 
these equations. Furthermore, except in special cases like the Merton 
problem without transaction costs, explicit solutions to the dynamic 
programming equations are typically unattainable, necessitating the 
use of a Feynman-type path integral approach [23].
   Using a Feynman-type path integral approach, we begin by 
formulating a stochastic Lagrangian based on the soccer player's 
objective function subject to the goal dynamics. Due to the continuous
yet non-dierentiable nature of Brownian motion, an It^o process is 
employed, and a smooth function is derived through the integration 
factor method. The nite continuous time interval is then divided 
into numerous small, equal-length intervals. Within each interval, a 
Feynman action function is constructed. By applying Taylor series 
expansions and Gaussian integrals, a Wick-rotated Schr-odinger-type 
equation is obtained. Finally, the optimal level of stubbornness for the 
soccer player is determined by solving the rst-order derivative with 
respect to the control variable [15, 16]. Unlike the classical Hamilton-
Jacobi-Bellman (HJB) framework, this path integral method avoids 
the complexity of computing intricate value functions. Additionally, 
in higher-dimensional goal dynamics, the HJB approach becomes 
computationally challenging and time-intensive, whereas the path 
integral method oers a more practical alternative [17, 18].
Conclusion
   This paper presents our perspective on constructing an optimal 
level of stubbornness for a soccer player to enhance their ratings. 
A central question is whether the system should incorporate past 
performance or focus on predicting future outcomes. To estimate 
future performance, we advocate for the use of SDEs. These models 
eectively adjust estimated abilities toward the average, with the 
degree of adjustment depending on the evidence of a player's 
underperformance or overperformance. The development of models 
to determine optimal stubbornness in soccer is still at an early stage.
Several challenges remain unresolved, with one of the most signicant 
being the integration of o-the-ball movements into the diusion 
coecient of the SDE. Another complex issue is accurately valuing 
goalkeepers' contributions [10]. Goalkeepers often operate almost as 
though playing a dierent sport, with each save essentially preventing 
a goal. By symmetry, one might argue that a save should carry the 
same weight as scoring a goal. However, goalkeepers typically make 
more saves in a match than the total number of goals scored, creating 
a nuanced challenge in balancing these contributions.

   An area that has received relatively little research attention is the 
analysis of players based on their defensive capabilities. This presents 
a challenge, as defensive actions lack a straightforward point-based
metric, posing a dilemma similar to determining how goalkeepers 
should be rewarded for making saves [10]. Another promising 
direction for future research could involve exploring McKean-
Vlasov [11] goal dynamics within the framework of a mean eld 
approach [6, 7]. Given the extensive range of strategies available to 
players during a match, their interactions could potentially align with 
mean eld game theory. Since the probability of scoring a goal at any 
given point in continuous time can be empirically estimated from the 
marginal distribution of the state variable, this method could serve as 
a powerful tool for numerical estimation.
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