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Abstract. Completely positive matrices play a central role in optimization and mathematical modeling,
particularly in reformulating NP-hard problems as linear programs over convex cones. This paper inves-

tigates the complete positivity of symmetric Toeplitz matrices with two nonzero coefficients, a sparse and

structured class of matrices. By exploring their connection to Bernoulli-compatible matrices, we derive
novel sufficient conditions for their complete positivity and extend these results to specific probabilistic and

optimization frameworks. The findings deepen our understanding of structured matrices and enhance their
applicability in stochastic modeling, control theory, and signal processing. Additionally, we provide illustra-

tive examples and practical implications for these conditions, contributing to both theoretical advancements

and computational feasibility in matrix analysis.

1. Introduction

Completely Positive Matrices (CPMs) hold a central position in mathematical research, connecting various
fields ranging from operator theory and harmonic analysis to their practical applications in computer vision
and signal processing. These matrices not only deepen our comprehension of positive semidefinite matrices
but also provide valuable insights into numerous areas of mathematics and engineering. Notably, in the
realm of optimization, a substantial number of NP-hard optimization problems defined over convex cones
can be reformulated as linear optimization problems over the cone of completely positive matrices, see [2],
[5], [8], [11], and [15].

A CPM is a real d× d square matrix A that admits a factorization

A = BBT,

where B is an d ×m matrix with nonnegative elements. This factorization highlights the intrinsic positive
semidefinite and symmetry aspects of such matrices. We denote the set of all d × d completely positive
matrices by Cd. Although determining complete positivity is NP-hard (see [9]), we identify some subsets of
Cd that can be easily determined.
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This paper focuses on symmetric Toeplitz matrices, a special class of matrices where each descending
diagonal from left to right is constant, as described by:

α0 α1 α2 · · · αd−2 αd−1

α1 α0 α1
. . . αd−2

α2 α1
. . .

. . .
. . .

...
...

. . .
. . .

. . . α1 α2

αd−2
. . . α1 α0 α1

αd−1 αd−2 · · · α2 α1 α0


, (1.1)

where αi ≥ 0, for i = 0, . . . , d− 1. Complete positivity is vital in the realm of Toeplitz matrices, enhancing
our theoretical understanding of these matrices and bolstering their practical utility. This property ensures
positive semidefiniteness, making Toeplitz matrices, especially the positive semidefinite ones, essential in
engineering fields such as stochastic filtering ([16]), digital signal processing ([7] and [19]), and control theory
([18]). For an in-depth examination of the subject, please refer to the comprehensive review provided in [1].

Our motivation stems from the need to understand the structure and properties of these matrices, par-
ticularly their role in extreme value theory, where Bernoulli compatible matrices are a significant concept.
We delve into the question of when a symmetric Toeplitz matrix can be a Bernoulli compatible matrix and
extend this inquiry to the realm of complete positivity.

A similar direction but different focuses is the work in [10] which is centered on investigating the complete
positivity of matrices characterized by particular sparsity patterns, including acyclic or circular matrices.
It demonstrates that in such instances, the verification of complete positivity and the determination of
factorizations can be achieved in linear time. For further related studies, readers are directed to the references
contained therein.

The paper is organized as follows: Section 2 revisits the concept of Bernoulli compatible matrices, pivotal
in extreme value theory. In Section 3, we present a sufficient condition for symmetric Toeplitz matrices with
two non-zero coefficients to qualify as Bernoulli compatible matrices and explore their extension to complete
positivity.

Throughout, we adhere to the convention of representing vectors and matrices in boldface, with aij ,
denoting the element in the i-th row and j-th column of a matrix A. The vectors and matrices with all
elements equal to 0 and 1 are denoted by 0 and J, respectively. Our standard probability space is denoted
by ([0, 1],L, λ), where L consists of the Lebesgue measurable subsets within the interval [0, 1], and λ is the
Lebesgue measure defined on [0, 1]. The ceiling function is denoted by ⌈·⌉.

2. An overview of Bernoulli compatible matrices

In this section, we explore the intricacies of Bernoulli compatible matrices (BCMs). These matrices serve
as a crucial bridge between discrete random processes and matrix theory, thereby playing an indispensable
role in a wide range of mathematical and statistical applications.

A matrix B of size d×d is classified as a Bernoulli compatible matrix if it can be represented as E
(
XXT

)
,

where X is a d × 1 random vector taking values in {0, 1}d. The set of all such matrices is denoted by Bd.
Notably, the matrix E

(
XXT

)
forms a convex combination of points in the set:{

xxT : x ∈ {0, 1}d
}
, (2.1)

implying that Bd is the convex hull of these points, a closed convex set. In contrast, Cd represents the convex
cone with extreme directions formed by

{
xxT : x ∈ [0, 1]d

}
(see Section 2.2 of [3]). It is important to note

that Bd ⊆ Cd, and this assertion is substantiated by Corollary 2.3 in [13], which states:

Proposition 2.1. Any Bernoulli compatible matrix is completely positive.

Consider a matrix B ∈ Bd, associated with a random vector X = (X1, . . . , Xd)
T taking values in {0, 1}d

such that B = E
(
XXT

)
. Defining events Ai := {Xi = 1}, for i = 1, . . . , d, the matrix B can be expressed
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as:

B =


Pr (A1) Pr (A1 ∩A2) · · · Pr (A1 ∩Ad)

Pr (A1 ∩A2) Pr (A2) · · · Pr (A2 ∩Ad)
...

...
. . .

...
Pr (A1 ∩Ad) Pr (A2 ∩Ad) · · · Pr (Ad)

 . (2.2)

This leads us to inquire whether a matrix’s membership in Bd can be determined by the existence of events
Ai in a probability space, such that their probabilities and those of their binary intersections correspond to
the matrix’s entries. This query is affirmatively addressed in Corollary 3 of [17]:

Proposition 2.2. A d × d matrix B is a BCM if and only if there exist events Ai, i = 1, . . . , d, on a
probability space such that the matrix B, as defined in (2.2), is equal to B.

This proposition forms a cornerstone of our analysis in the subsequent section, where we explore the
conditions under which a given matrix can be classified as a BCM.

3. Symmetric Toeplitz matrices with two non-zero αis

In this section, we explore special cases of symmetric Toeplitz matrices. Building upon the work of [17],
which provides sufficient and necessary conditions for 1- and 2-dependent matrices (where only α1 is positive
and only both α1 and α2 are positive, respectively), we extend these results to consider the cases where any
two αis are positive. This extension enables a deeper understanding of the structural nuances of symmetric
Toeplitz matrices in specific sparse configurations.

We recall that Cd represents a convex cone, a fact that leads to an immediate and important implication
for completely positive matrices, as stated in the following proposition:

Proposition 3.1. Let B be any completely positive matrix. Then kB is completely positive for any k ≥ 0.

Interestingly, this property allows us to focus on symmetric Toeplitz matrices with diagonal elements
normalized to α0 := 1/d. This representation aligns with the probability space framework and sets the stage
for the ensuing analysis.

We now consider symmetric Toeplitz matrices where two of the αi values, denoted as αm = α and
αm+n = β, for m = 1, . . . , d − 2, and n = 1, . . . , d −m − 1, are positive, while all other αi values are zero.
In this case, the matrix takes the form:

1 . . . m . . . m+ n · · · d− 1



1/d 0 · · · 0 α 0 · · · 0 β 0 · · · 0

1 0 1/d 0
. . . 0 α

. . .
. . . 0 β

. . .
...

...
... 0

. . .
. . .

. . . 0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . . 1/d
. . .

. . .
. . .

. . . 0
. . .

. . . β

m α 0
. . .

. . . 1/d
. . .

. . .
. . . α 0

. . . 0

0 α
. . .

. . .
. . . 1/d

. . .
. . . 0 α

. . .
...

...
... 0

. . . 0
. . .

. . .
. . .

. . .
. . . 0

. . . 0

0
. . .

. . . α 0
. . .

. . . 1/d
. . .

. . .
. . . α

m+ n β 0
. . . 0 α

. . .
. . .

. . . 1/d
. . .

. . . 0

0 β
. . .

. . . 0
. . .

. . .
. . .

. . . 1/d
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
d− 1 0 · · · 0 β 0 · · · 0 α 0 · · · 0 1/d

. (3.1)

It’s important to note that in this layout, the indices i, as indicated by the column on the left and the row
above the matrix, correspond to the (i+ 1)-th column and row of the matrix.
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Theorem 3.2. A d × d symmetric Toeplitz matrix with 1/d main diagonal elements and positive elements
on the m- and (m + n)-diagonal, as specified in (3.1), is in Bd if and only if the following conditions are
satisfied:

Case 1. For m = n, the conditions vary as follows:

For 5m+ 1 ≤ d, α, β ≥ 0; α+ 4β ≤ 2/d; 2α− β ≤ 1/d;

For 4m+ 1 ≤ d < 5m+ 1,
α ≥ 0; 0 ≤ β ≤ 1/(2d); α+ β ≤ 1/d;
2α− β ≤ 1/d;

For 3m+ 1 ≤ d < 4m+ 1, α, β ≥ 0; α+ β ≤ 1/d; 2α− β ≤ 1/d;
For 2m+ 1 ≤ d < 3m+ 1, α ≥ 0; 0 ≤ β ≤ 1/d; 2α− β ≤ 1/d.

Case 2. For m ̸= n, the conditions vary as follows:

For 2m+ 2n+ 1 ≤ d, α, β ≥ 0; 2α+ 2β ≤ 1/d;
For 2m+ n+ 1 ≤ d < 2m+ 2n+ 1, α, β ≥ 0; 2α+ β ≤ 1/d;
For m+ n+ 1 ≤ d < 2m+ n+ 1, α, β ≥ 0; α+ β ≤ 1/d.

Proof. For Case 1, when m = n, by permuting the rows and columns of (3.1), we can obtain the following
block diagonal matrix B, where each block is a two-dependent matrix:

B =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am


where

Ai =



1/d α β 0 · · · 0

α 1/d α
. . .

. . .
...

β α
. . .

. . .
. . . 0

0
. . .

. . .
. . . α β

...
. . .

. . . α 1/d α
0 · · · 0 β α 1/d


, (3.2)

is a ki × ki matrix incorporating the i, i + m, . . . , i + (ki − 1)m-th rows and columns of (3.1) with ki =
⌈(d− i+ 1)/m⌉, for i = 1, . . . ,m. Note that a matrix of the form (3.1) is in Bd if and only if B is in Bd (see
Lemma 12 in [17]).

Now, let’s consider the subcase 5m + 1 ≤ d (or equivalently, k1 ≥ 6). For the only if part, if B is in Bd,
then Ai must be in Bki , for i = 1, . . . ,m, respectively. The necessary and sufficient condition for A1 to be
in Bk1 is given in Proposition 21 of [17], which is α, β ≥ 0; α+ 4β ≤ 2/d; 2α− β ≤ 1/d. Note that Ai, for
i = 2, . . . ,m, either equals A1 or has one dimension less, then the conditions ensuring that Ai is in Bki

, for
i = 2, . . . ,m is identical or less stringent to the previous conditions (see Remark 22 of [17]). This completes
the proof for this subcase. For the if part, given α and β satisfy these conditions, then A1 is in Bk1

. If
ki ≥ 6, the conditions for α and β remain the same, implying that Ai is in Bki . If ki = 5, the constraints on
α and β are less restrictive than for ki = 6 (see Remark 22 of [17]), confirming Ai is in Bki . Therefore, Ai

is in Bki
, for i = 1, . . . ,m, which implies that B ∈ Bd.

The following three subcases of Case 1 are equivalent to that of k1 = 5, 4, and 3, respectively. Using a
similar argument as above, we can conclude that B in Bd if and only if A1 in Bk1

. Again, the necessary and
sufficient conditions for A1 in Bk1

are given in Remark 22 of [17]. We observe that 2m + 1 ≥ d, and this
completes the proof of Case 1.

For Case 2, where m ̸= n, unlike case 1, there are no 3 × 3 principal submatrices of B where all of its
off-diagonal elements are positive. We consider the first subcase, where 2m+2n+1 ≥ d. To prove the only if
part, suppose B is in Bd. Let the sets Ai, for i = 1, . . . , d, be those corresponding to B as specified in (3.1).
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Ai+m+n

Ai

Ai+m

β

α

(a) i = 1, . . . ,m case

Ai−m

Ai+m

Ai+m+n Aiβ

α

α

(b) i = m+ 1, . . . ,m+ n case

Ai−m

Ai+m

Ai−m−n

Ai+m+n

Ai

β

β

α

α

(c) i = m+ n+ 1, . . . , d−m− n case

Figure 1. Venn Diagram for Sets Ai, i = 1, . . . , d−m− n

It is easy to see that Ai, for i = 1, . . . , d, intersect with two, three, or four sets according to the following
five patterns:

Pr (Ai ∩Ai+m) = α and Pr (Ai ∩Ai+m+n) = β, for i = 1, . . . ,m;

Pr (Ai ∩Ai−m) = Pr (Ai ∩Ai+m) = α and

Pr (Ai ∩Ai+m+n) = β, for i = m+ 1, . . . ,m+ n;

Pr (Ai ∩Ai−m) = Pr (Ai ∩Ai+m) = α and

Pr (Ai ∩Ai−m−n) = Pr (Ai ∩Ai+m+n) = β, for i = m+ n+ 1, . . . , d−m− n;

Pr (Ai ∩Ai−m) = Pr (Ai ∩Ai+m) = α and

Pr (Ai ∩Ai−m−n) = β, for i = d−m− n+ 1, . . . , d−m;

Pr (Ai ∩Ai−m) = α and Pr (Ai ∩Ai−m−n) = β, for i = d−m+ 1, . . . , d.

Note that the last two patterns are similar to that of the first two patterns, respectively, so we can only
focus on the first three. The Venn diagrams illustrating the sets Ai, for i = 1, . . . , d−m− n, are shown in
Figure 1. By imposing the non-negativity constraint on the probability of each set and the constraint that
Pr (Ai) = 1/d, for i = 1, . . . , d, we obtain the following inequalities:

α, β ≥ 0; (3.3)

α+ β ≤ 1/d; (3.4)

2α+ β ≤ 1/d; (3.5)

2α+ 2β ≤ 1/d. (3.6)

These constraints become more restrictive from (3.4) to (3.6). This completes the proof for the only if part
in the first subcase. Similar arguments can be made for the second subcase 2m+n+1 ≤ d < 2m+2n+1 and
the third subcase m+n+1 ≤ d < 2m+n+1. In the second subcase, the constraints remain (3.3)-(3.5), and
in the third subcase, the constraints remain (3.3) and (3.4). Observing that d ≥ m+ n+ 1, these completes
the proof for the only if part in all subcases.

For the if part, let us initially focus on the first subcase. We will show that the matrix B = (bij) takes
the form of (3.1), for α, β satisfying 2α + 2β ≤ 1/d, belongs to Bd, for any 2m + 2n + 1 ≤ d. To validate
this, we need to establish the existence of events Ai, i = 1, . . . d, on a probability space with identical
probabilities of 1/d such that bij = Pr (Ai ∩Aj), for 1 ≤ i, j ≤ d. To this end, we construct disjoint sets
on a non-atomic probability space. These sets include Ci, for i = 1, . . . d −m, Di, for i = 1, . . . d −m − n,
Ei, for i = 1, . . .m, d − m + 1, . . . , d, Fi, for i = m + 1, . . .m + n, d − m − n + 1, . . . , d − m, and Gi, for
i = m+ n+ 1, . . . , d−m− n, with probabilities

Pr (Ci) = α; Pr (Di) = β; Pr (Ei) = 1/d− α− β;

Pr (Fi) = 1/d− 2α− β; and Pr (Gi) = 1/d− 2α− 2β.
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This can be done as the sum of the probabilities of all above-mentioned sets are

(d−m)α+ (d−m− n)β + 2m(1/d− α− β)

+ 2n(1/d− 2α− β) + (d− 2m− 2n)(1/d− 2α− 2β)

= 1− (d−m)α− (d−m− n)β < 1.

Define

Ai =



Ci ∪Di ∪ Ei, for i = 1, . . . ,m;

Ci−m ∪ Ci ∪Di ∪ Fi, for i = m+ 1, . . . ,m+ n;

Ci−m ∪ Ci ∪Di−m−n ∪Di ∪Gi, for i = m+ n+ 1, . . . , d−m− n;

Ci−m ∪ Ci ∪Di−m−n ∪ Fi, for i = d−m− n+ 1, . . . , d−m;

Ci−m ∪Di−m−n ∪ Ei, for i = d−m+ 1, . . . , d.

We see that Pr (Ai ∩Aj) = bij , for 1 ≤ i, j ≤ d, which completes the proof for the first subcase. Similarly,
we can construct sets that satisfy the other two cases. □

Example 3.1. Consider two distinct 13× 13 matrices, B1 and B2, defined as follows:

B1 =



1/13 0 0 α 0 0 β 0 0 0 0 0 0
0 1/13 0 0 α 0 0 β 0 0 0 0 0
0 0 1/13 0 0 α 0 0 β 0 0 0 0
α 0 0 1/13 0 0 α 0 0 β 0 0 0
0 α 0 0 1/13 0 0 α 0 0 β 0 0
0 0 α 0 0 1/13 0 0 α 0 0 β 0
β 0 0 α 0 0 1/13 0 0 α 0 0 β
0 β 0 0 α 0 0 1/13 0 0 α 0 0
0 0 β 0 0 α 0 0 1/13 0 0 α 0
0 0 0 β 0 0 α 0 0 1/13 0 0 α
0 0 0 0 β 0 0 α 0 0 1/13 0 0
0 0 0 0 0 β 0 0 α 0 0 1/13 0
0 0 0 0 0 0 β 0 0 α 0 0 1/13



,

where m = n = 3 aligns with the second subcase of Case 1.

B2 =



1/13 0 0 α 0 β 0 0 0 0 0 0 0
0 1/13 0 0 α 0 β 0 0 0 0 0 0
0 0 1/13 0 0 α 0 β 0 0 0 0 0
α 0 0 1/13 0 0 α 0 β 0 0 0 0
0 α 0 0 1/13 0 0 α 0 β 0 0 0
β 0 α 0 0 1/13 0 0 α 0 β 0 0
0 β 0 α 0 0 1/13 0 0 α 0 β 0
0 0 β 0 α 0 0 1/13 0 0 α 0 β
0 0 0 β 0 α 0 0 1/13 0 0 α 0
0 0 0 0 β 0 α 0 0 1/13 0 0 α
0 0 0 0 0 β 0 α 0 0 1/13 0 0
0 0 0 0 0 0 β 0 α 0 0 1/13 0
0 0 0 0 0 0 0 β 0 α 0 0 1/13



,

where m = 3 and n = 2, corresponding to the first subcase of Case 2. By Theorem 3.2, B1 is a BCM if and
only if α ≥ 0; 0 ≤ β ≤ 1/26; α + β ≤ 1/13; 2α − β ≤ 1/13, while B2 is a BCM if and only if α, β ≥ 0;
2α+ 2β ≤ 1/13.

Remark 3.3. In the special case where m = n = 1, the matrix in (3.1) is a two-dependent matrix, meaning
only the first two diagonals are positive. The conditions for this case align with those stated in Proposition
21 and Remark 22 of [17], underpinning Case 1.
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To broaden the application of the specific case outlined in (3.1) towards the complete positivity of general
symmetric Toeplitz matrices featuring two non-zero coefficients, we adapt the conditions presented in The-
orem 3.2. This adaptation involves the substitution of α with β/(dα) and β with γ/(dα). By implementing
these substitutions, we formulate the following corollary, thereby expanding our analysis to encompass a
more extensive array of symmetric Toeplitz matrices:

Corollary 3.4. A d× d symmetric Toeplitz matrix with α main diagonal elements and positive elements β
and γ only on the m- and (m+ n)-diagonal of the form

1 . . . m . . . m+ n · · · d− 1



α 0 · · · 0 β 0 · · · 0 γ 0 · · · 0

1 0 α 0
. . . 0 β

. . .
. . . 0 γ

. . .
...

...
... 0

. . .
. . .

. . . 0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . . α
. . .

. . .
. . .

. . . 0
. . .

. . . γ

m β 0
. . .

. . . α
. . .

. . .
. . . β 0

. . . 0

0 β
. . .

. . .
. . . α

. . .
. . . 0 β

. . .
...

...
... 0

. . . 0
. . .

. . .
. . .

. . .
. . . 0

. . . 0

0
. . .

. . . β 0
. . .

. . . α
. . .

. . .
. . . β

m+ n γ 0
. . . 0 β

. . .
. . .

. . . α
. . .

. . . 0

0 γ
. . .

. . . 0
. . .

. . .
. . .

. . . α
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
d− 1 0 · · · 0 γ 0 · · · 0 β 0 · · · 0 α

.

is completely positive if the following conditions are satisfied:

Case 1. For m = n, the conditions vary as follows:

For 5m+ 1 ≤ d, α, β, γ ≥ 0; β + 4γ ≤ 2α; 2β − γ ≤ α;
For 4m+ 1 ≤ d < 5m+ 1, β ≥ 0; 0 ≤ γ ≤ α/2; β + γ ≤ α; 2β − γ ≤ α;
For 3m+ 1 ≤ d < 4m+ 1, β, γ ≥ 0; β + γ ≤ α; 2β − γ ≤ α;
For 2m+ 1 ≤ d < 3m+ 1, β ≥ 0; 0 ≤ γ ≤ α; 2β − γ ≤ α.

Case 2. For m ̸= n, the conditions vary as follows:

For 2m+ 2n+ 1 ≤ d, α, β, γ ≥ 0; 2β + 2γ ≤ α;
For 2m+ n+ 1 ≤ d < 2m+ 2n+ 1, α, β, γ ≥ 0; 2β + γ ≤ α;
For m+ n+ 1 ≤ d < 2m+ n+ 1, α, β, γ ≥ 0; β + γ ≤ α.

Remark 3.5. It is well-established that any symmetric, nonnegative, diagonally dominant matrix is com-
pletely positive. That is, for a matrix Ad×d = (aij), where aij ≥ 0, aij = aji, and

aii ≥
∑
k ̸=i

aik, for all i,

then A belongs to Cd. However, the matrices discussed in Corollary 3.4 are not necessarily diagonally
dominant. For instance, consider the completely positive matrix J3×3 with m = n = 1, which is not diagonally
dominant.
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4. Discussion and Conclusion

Recall that the matrix in (1.1) can be expressed as Td(f), where the generating function is given by

f(θ) := α0 + 2

d−1∑
i=1

αi cos(iθ), θ ∈ [0, π],

see [6] and [14] and the references therein. It is known that if f is nonnegative on [0, π] and not almost surely
equal to 0, then the Toeplitz matrix Td(f) is positive definite for any positive order d (see Corollary 5.1 of
[14]). Moreover, its eigenvalues can be computed using highly efficient algorithms, even when the coefficients
αi are complex, see [4] and [12].

When considering the matrix in (3.1), its generating function specializes to the trigonometric polynomial

1/d+ 2α cos(mθ) + 2β cos((m+ n)θ).

Ensuring that this polynomial remains nonnegative over [0, π] guarantees the matrix is positive definite,
making it a valuable preliminary check for complete positivity.

This paper primarily examines symmetric Toeplitz matrices and identifies the key conditions under which
they are Bernoulli compatible matrices—a classification of particular interest in extreme value theory. We
further extend our analysis to the concept of complete positivity, focusing on symmetric Toeplitz matrices
in which only two of the αi coefficients are nonzero. For these matrices, we establish sufficient conditions
that ensure complete positivity. These findings not only improve the computational feasibility of working
with such matrices but also open new research directions in the broader domain of Toeplitz matrices and
their applications.
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