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Abstract: In this paper, we derive a simplified version of the phase-lock equations
(PLE) that arises in the study of Ginzburg-Landau equations of superconductivity. Our
goal is to diffuse the results to an audience who is not entirely familiar with theoretical
dynamic behavior, existence, uniqueness, and continuation of solutions of partial differ-
ential equations (PDE) on abstract space, but might nonetheless be interested in the
practical simulation and connections of dynamical systems versus the numerical issues of
PDE in a simpler space. The significant features observed in PLE are their strong attract-
ing sets and basin of attractions resident in the PLE system, which may be beneficial to
physicists and engineers in the context of superconductivity. We also explore numerically
and graphically the sensitivity of PLE solutions with a variety of forcing functions and
parameters.

1. Introduction

It is well known that time-dependent Ginzburg-Landau equations have been widely
used to analyze superconductivity phenomena with an applied electromagnetic field both
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theoretically and numerically (cf. [8, 1, 3]). The existence of time-periodic solutions to
Ginzburg-Landau equations has been investigated by many researchers. In 1999, Wang
proved the existence of at least one time-periodic solution to the Ginzburg-Landau equa-
tions with d = 2 (cf. [4]), and in 2000, Zhan extended the result to the case with d = 3
(cf. [9]). However, because of the higher-order expansion terms of the order parameter,
such equations are nonlinear, making the theoretical analysis very limited and compli-
cated. In 2000, Zhan [9] studied the connections between phased-lock equations and
time-dependent Ginzburg-Landau equations, and pointed out that these two equations
are closely related with certain transformations. Phase-lock equations describe the math-
ematical relationship within a phase-locked loop system. Compared with time-dependent
Ginzburg-Landau equations, phase-lock equations are much simpler. The study of phase-
lock equations improves our understanding of the original Ginzburg-Landau equations,
thereby advancing our knowledge of superconductivity phenomena (cf. [10, 6, 2]).

Let Ω be a simply bounded domain in Rd (d = 2 or 3), the phase-lock equations can
then be described as follows.

ft + κ2(|f |2 − 1)f −∆f + |q|2f = 0, (t, x) ∈ [0,∞)× Ω,

η qt + |f |2q+ curl 2q− h = 0, (t, x) ∈ [0,∞)× Ω,(1)

divq = 0, (t, x) ∈ [0,∞)× Ω,

with initial conditions

f(x, 0) = f0(x) and q(x, 0) = q0(x), x ∈ Ω,

where f is a real-valued function that describes the states of conductivity of a conductor,
q is a vector-valued real function that represents the internal magnetic potential (IMP) of
the conductor, h = curlH with H the external electromagnetic field being applied to the
conductor, κ is the Ginzburg-Landau parameter, and η is the non-dimensional diffusivity.

Note that f = 0 corresponds to the nonsuperconductive state of the conductor, whereas
f ̸= 0, corresponds to the superconductive state of the conductor. divq = 0 indicates
that q is the vector potential in the London gauge (cf. [5]).

In 2000, Zhan proved the following theorem [7] that under certain conditions, system (1)
has at least three time-periodic solutions and one of them describes the superconductivity
state.

Theorem 1. Suppose that ∂Ω is of class C1+s, Ω̄ = Ω ∪ ∂Ω, and W is a constant vector

with positive components such that 1 − |W|2

κ
> 0. Furthermore, assume that h(t, x) ∈

Cs([0,∞)× Ω), is time-periodic with period T > 0, and that there is a positive number c

such that 0 < c ≤
√
1− |W|2

κ
< 1, and cW−h ≥ 0. Phase-lock equations possess at least
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three time-periodic solutions (f(t, x),q(t, x)) that satisfy f(T+t, x) = f(t, x),q(T+t, x) =
q(t, x),∀(t, x) ∈ R× Ω, and the natural boundary conditions

∂f

∂n
= 0,

∂q

∂n
= 0, on boundary of Ω.

One of the time-periodic solutions satisfies 0 < c ≤ f ≤ 1, which describes the supercon-
ductivity state and is exponentially stable.

In this paper, our goal is to investigate a simplified phase-lock equation and analyze its
dynamical behavior.

Notice that in system (1), if h is a time-periodic function and independent of spatial
variables, then solutions of (1) are also independent of spatial variables. In this case,
system (1) can be reduced to the following system of nonlinear ordinary differential equa-
tions.

ft = κ2(1− |f |2)f − |q|2f,

qt =
1

η
(−|f |2q+ h),(2)

f(0) = f0 and q(0) = q0.

There are many approaches to investigate nonlinear ordinary differential equations.
In this paper, we explore the impacts of various parameters values on the solutions of
system (2) dynamically and numerically. From now on, for simplicity, we consider q in
one dimension. Our results can be extended to higher dimensions of q.

The paper is organized as follows. In Section 2, we discuss the dynamical and numerical
behaviors of system (2) when h = 0. Followed by discussions of the system when there is
a time-periodic external noise, h = F (α) > 0, with a strength of α, in Section 3. Section
4 investigates the system with a negative diffusivity parameter η. We conclude our paper
in Section 5.

2. Unforced Case: Steady States and Stability

We start with the case where h = 0. Then system (2) becomes

ft = κ2(1− f 2)f − q2f,

qt = −1

η
f 2q,(3)

f(0) = f0 and q(0) = q0.

By letting

κ2(1− f 2)f − q2f = 0 and − 1

η
f 2q = 0,
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we obtain the equilibrium points of system (3) that are (0, 0), (0,±q̄) and (±1, 0). Each
equilibrium represents something for the system:

• E0 = (0, 0): both conductivity of the conductor f and IMP q are zero ;
• E1 = (0, q̄): only positive IMP q remains ;
• E2 = (0,−q̄): only negative IMP q remains ;
• E3 = (1, 0): positive unit conductivity of the conductor f remains ;
• E4 = (−1, 0): negative unit conductivity of the conductor f remains.

To study the dynamical behaviors of solutions of system (3), we apply the linearization
technique at the equilibrium points.

Note that the Jacobian matrix of system (3) is

J(f, q) =

 κ2(1− f 2)− 2κ2f 2 − q2 −2qf

−2

η
fq −1

η
f 2

 .

The linearization at equilibrium points E0 is

J(0, 0) =

[
κ2 0

0 0

]
,

with eigenvalues λ1 = κ2 and λ2 = 0, which indicates that equilibrium points E0 is always
unstable.

The linearization at equilibrium points E1 and E2 is

J(0,±q̄) =

[
κ2 − q̄2 0

0 0

]
.

Its eigenvalues are λ1 = κ2 − q̄2 and λ2 = 0, which indicates that equilibrium points E1

and E2 are stable when q̄ > κ and unstable when q̄ ≤ κ. Note that we assume q̄ ≥ 0.

Moreover, the linearization at equilibrium points (±1, 0) is

J(±1, 0) =

 −2κ2 0

0 −1

η

 ,

whose eigenvalues are λ1 = −2κ2 and λ2 = −1

η
. Thus the equilibrium points E3 and E4

are stable if η > 0 and unstable if η < 0.

From the above analysis, we know that the unforced equations have a pair of saddle-
type steady states at E1 and E2, and a pair of stable steady states at E3 and E4. To better
understand the long term qualitative behavior of the model system, we numerically gener-
ated two phase diagrams using the analytical tool XPPAUT, given in Figure 1 and Figure
2 by fixing κ = 3 and choosing η = 0.1 and η = 0.01 respectively. From both figures, we
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can observe nulliclines, equilibrium points, stable manifolds and unstable manifolds corre-
sponding to saddle steady states E1 and E2. Moreover, the two stable equilibria E3 and E4

each has an associated Basin of attractions, say B1 = {x0|x(0) = x0, limt→∞ x(t) = E3}
and B2 = {x0|x(0) = x0, limt→∞ x(t) = E4}. The boundaries of these basins contain the
stable and unstable manifolds as shown in the diagrams. All trajectories close to the
origin are repelled and head toward steady states E3 or E4 . It is important to point
out that the stable manifold through both saddle equilibrium in this phase-lock planner
system is also called separatrix, precisely because it separates the orbits into two sets
respectively.

Figure 1. Phase-portrait showing steady states, stable and unstable man-
ifolds of saddle-type steady states, strong sets of stable steady states, and
a few other representative orbits with κ = 3 and η = 0.1
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Figure 2. Phase-portrait showing steady states, stable and unstable man-
ifolds of saddle-type steady states, strong sets stable steady states, and a
few other representative orbits with κ = 3 and η = 0.01

Remark 1. It is important to point out that actual derivation of the separatrix presents
certain difficulties since being on a separatrix is a non-local condition for a point. The
future work may address the constructive behavior of separatrix appeared in Figure 1 and
Figure 2 in the vicinity of other steady states of the system. In addition, one might be
interested in constructing Lyapunov functional to prove the global stability of PLE.

Next, we present the numerical behaviors of solutions (f, q) of the system (3) in Figure
3 for different values of η and various initial conditions. Here κ is chosen to be 3.

(a) η = 10 (b) η = 1
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(c) η = 0.1 (d) η = 0.01

Figure 3. Solutions (f, q) of the unforced system with κ = 3

We observe that solutions of the unforced system converge either to the equilibrium
points (1, 0) or (0, q) with q > κ(= 3). Moreover, there are two regions in the plane,
denoted by R(0,q) and R(1,0). When initial values (f0, q0) are in the region R(0,q), solutions
converges to the equilibrium points (0, q), while when initial values are in the region R(1,0),
solutions converge to the equilibrium point (1, 0). These two regions are roughly divided
by a curve/line which depends on values of κ and η. The curve/line intersects the q−axis
at (0, κ) and as η becomes smaller, the curve/line becomes steeper.

Similar phenomenon can also be observed for κ = 4 in Figure 4.

(a) η = 10 (b) η = 1
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(c) η = 0.1 (d) η = 0.01

Figure 4. Solutions (f, q) of the unforced system with κ = 4

These results indicate that if the initial magnetic potential of the conductor is suffi-
ciently high, its superconductivity will eventually disappear. On the contrary, the con-
ductor will possess superconductivity and its internal magnetic potential will disappear.

To support this observation, we present how f and q change as time elapse for κ = 3 and
η = 1 with two different initial values (f0, q0) = (2, 2) ∈ R(1,0) and (f0, q0) = (2, 8) ∈ R(0,q)

in Figure 5.

(a) f(t) with (f0, q0) = (2, 2) (b) q(t) with (f0, q0) = (2, 2)
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(c) f(t) with (f0, q0) = (2, 8) (d) q(t) with (f0, q0) = (2, 8)

Figure 5. Dynamical behaviors of f(t) and q(t) with κ = 3 and η = 1

3. Forced Case

One of the significant features of phase lock equation appeared in superconductivity
is its attracting set and basin of attraction. As presented so far in Section 2, the speed
of attraction is resident in the system’s behavior without the inclusion of the outside
forcing function. It is at this point in our exploration of the phase lock equation where
we numerically and graphically explore the phase lock with a variety of forcing functions
and parameter values.

Let
h = α sin(ωt) + α + ϵ

where ϵ is a small positive number to guarantee h > 0. Then we have 0 < ϵ ≤ h ≤ 2α+ ϵ.

Following Theorem 1, we know that in order to guarantee the existence of periodic
solutions, values of c,W and κ should satisfy

0 < c ≤
√

1− W 2

κ
< 1 and cW − h ≥ 0,

where c is a positive constant.

Since h ≤ 2α + ϵ, to satisfy cW − h ≥ 0, we can choose W =
2α + ϵ

c
.

Moreover,

√
1− W 2

κ
< 1, implies κ > 0, and from c ≤

√
1− W 2

κ
, we obtain c2 ≤

1− (2α + ϵ)2

c2κ
, which leads to

(4) κ ≥ (2α + ϵ)2

c2(1− c2)
.
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For numerical experiments that we present in this section, without loss of generality,
we select ω = 2π, ϵ = 0.0001, and c = 0.7.

We first choose the value of α to be 1. Then by the inequality (4), we define κ = 16.0080.
Solutions of the forced system (2) are presented in Figure 6.

Compared with the results in the case h = 0, some similar behaviors can be observed.
For example, The plane is divided into two regions by a curve/line starting around (0, κ).
Also, as the value of η becomes smaller, the curve/line is steeper.

(a) η = 10 (b) η = 1

(c) η = 0.1 (d) η = 0.01

Figure 6. Solutions (f, q) of the forced system with h = sin(2πt)+1.0001

However, as we look into the dynamical behaviors f(t) and q(t) for more details, differ-
ences between forced and unforced cases can be observed. To observe these differences, we
perform similar simulations of f(t) and q(t) for η = 1 as we did in Figure 5. Here the two
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initial conditions that we select are (f0, q0) = (2, 2) ∈ R(1,0) and (f0, q0) = (2, 20) ∈ R(0,q)

(ref. Figure 7).

(a) f(t) with (f0, q0) = (2, 2) (b) q(t) with (f0, q0) = (2, 2)

(c) f(t) with (f0, q0) = (2, 20) (d) q(t) with (f0, q0) = (2, 20)

Figure 7. Dynamical behaviors of f(t) and q(t) with h = sin(2πt)+1.0001
and η = 1

First of all, because of the oscillating property of the external forcing function h, so-
lutions here show oscillating behavior. In addition, when initial values are in the region
R(1,0), unlike the unforced case in which solutions converge to the point (1, 0), solutions
of the forced system eventually oscillate around (1, α). When initial conditions are in
the region R(0,q), instead of converging to the point (0, q) with q > κ, solutions oscillate
around 0 in the f−direction and oscillating increase without bound in the q−direction.

To observe how the value of α affects the behaviors of solutions, in Figure 8, we change
the value of α to 3, and present solutions of system (2) with h = 3 sin(2πt) + 3.0001, in
which we choose κ = 144.0624 by using (4).
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(a) f(t) with f0 = 2 (b) q(t) with q0 = 2

(c) f(t) with f0 = 2 (d) q(t) with q0 = 150

Figure 8. Dynamical behaviors of f(t) and q(t) with h = 3 sin(2πt) +
1.0001 and η = 1

Similar behaviors can be observed. However, in this case, q(t) oscillates around 3
instead around 1 when q0 is small.

4. Explore Unforced and Forced System with Negative Diffusivity

In this section, we discuss solutions of system (2) with negative diffusivity η.

We first show numerical results of the unforced case, that is h = 0, in Figure 9 with
different negative values of η. As the same as what we analyzed in Section 2, for η < 0, if
initial internal potential of the conductor is positive, then the equilibrium (1, 0) is unstable
and the conductivity of the conductor will decrease to zero eventually.
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(a) η = −10 (b) η = −1

(c) η = −0.1 (d) η = −0.01

Figure 9. Solutions of the unforced system with κ = 3 and various nega-
tive η values

Moreover, to look into the details of the behaviors of f(t) and q(t), Figure 10 presents
f(t) and q(t) for (f0, q0) = (2, 0) and (f0, q0) = (2, 2) with η = −1.
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(a) f(t) with (f0, q0) = (2, 0) (b) q(t) with (f0, q0) = (2, 0)

(c) f(t) with (f0, q0) = (2, 2) (d) q(t) with (f0, q0) = (2, 2)

Figure 10. f(t) and q(t) of the unforced system with κ = 3 and η = −1

Next, we discuss the system with positive periodic external forces and different negative
values of η. Let h = sin(2πt) + 1.0001, the numerical results are shown in Figure 11.
Compared with the unforced case, we can observe quite different behaviors of solutions.
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(a) η = −10 (b) η = −1

(c) η = −0.1 (d) η = −0.01

Figure 11. Solutions of the forced system with various negative η values

In addition, numerical behaviors of f(t) and q(t) with different initial conditions are
presented in Figure 12, in which we use η = −1. Compared with the results in Figure 7,
we can see that they are quite different from each other, and one is not merely the reverse
of another.
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(a) f(t) with (f0, q0) = (2, 0) (b) q(t) with (f0, q0) = (2, 0)

(c) f(t) with (f0, q0) = (2, 2) (d) q(t) with (f0, q0) = (2, 2)



17

(e) f(t) with (f0, q0) = (2, 20) (f) q(t) with (f0, q0) = (2, 20)

Figure 12. f(t) and q(t) for the forced system with h = sin(2πt)+1.0001
and η = −1

5. Conclusion Remarks

In conclusion, we investigate the dynamical and qualitative behaviors of phase-lock
equations arising in superconductivity, modeled as nonlinear ordinary differential equa-
tions. By selecting different values of the Ginzburg-Landau parameter κ and the diffu-
sivity parameter η, we identify varying attracting regions for solutions corresponding to
various initial conditions. Additionally, the presence of periodic external noise induces
oscillatory behaviors in the solutions. Despite these variations, the qualitative behaviors
of the solutions remain consistent across all cases. This model system can be further
developed to generate domain of attraction in superconductivity in the field of physics
and engineering. The authors found that phase-lock model arises in superconductivity to
be both challenging and mathematically interesting through the exploration of how differ-
ent range parameter values influence the system. Hopefully, future research will address
global qualitative and quantitative behavior and new applications of this model system.
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