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Abstract. Let S be a set of positive integers. We say that S is a
subset-sum-distinct set (briefly, S is an SSD-set) if for any two finite
subsets X, Y of S, ∑

x∈X

x =
∑
y∈Y

y ⇒ X = Y.

For fixed positive integers n and p, we set

S(n, p) := {1p, 2p, 3p, . . . , np}.
We prove a sufficient condition for which S(n, p) is an SSD-set.
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1. Introduction

Let S be a set of positive integers. We say that S is a subset-sum-distinct
set (briefly, S is an SSD-set) if for any two finite subsets X, Y of S,∑

x∈X
x =

∑
y∈Y

y ⇒ X = Y.

One of the most interesting and natural SSD-sets is

S := {1, 2, 22, 23, . . . }.

By the uniqueness of binary expansion, S is certainly an SSD-set.
Stimulated by Erdös’ open question ([7, p. 114, problem C8]), finite dense

SSD-sets have been considered by many mathematicians (see [1],[2],[3],[4],[5,
pp. 59–60],[6]).

On the other hand, it is one of the hardest problems in computer science
to determine whether a given set S is an SSD-set. The difficulty arises from
the fact that we need to consider all subsets of S.

The purpose of this paper is as follows: For fixed positive integers n and
p, we set

S(n, p) := {1p, 2p, 3p, . . . , np}. (1)

We prove a sufficient condition for which S(n, p) is an SSD-set.

2. Main result

Concerning S(n, p) in (1), we pose the following:

Problem 1.

(i) For a fixed n, find a condition on p for which S(n, p) is an SSD-set.
(ii) As a special case of (i), is it true that if S(n, r) is an SSD-set for

some positive integer r, then is so S(n, r + 1)?

2.1. Motivation. The motivation to consider Problem 1 is as follows. For
a Morse function f : M → R on a compact manifold M , we define the fiber
product by

C(f) := {(u, v) ∈ M ×M | f(u) = f(v)}.
As explained in [8], it is worthwhile to obtain topological information on
C(f).

As f , we consider Morse functions on U(n). Here U(n) denotes the uni-
tary group of degree n consisting of n× n unitary matrices.

Recall from [9] that correspondingly to a choice of real numbers

0 < c1 < c2 < · · · < cn,

we obtain the canonical Morse function on U(n). When a positive integer
p is fixed and ci is defined by ci = ip for 1 ≤ i ≤ n, we write the Morse
function by fn,p.
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We already know the following formula

χ(C(fn,p)) = (−1)n
∫ 1

0

n∏
j=1

(
4 sin2(πjpx)

)
dx, (2)

where χ(C(fn,p)) denotes the Euler characteristic of the space C(fn,p).
For special cases, we can simplify (2) by the following:

Lemma 2. The equation

χ(C(fn,p)) = (−2)n (3)

holds if and only if S(n, p) is an SSD-set. (Note that in this case, the right-
hand side of (3) does not depend on p.)

Lemma 2 is the motivation for considering Problem 1.

2.2. Example. For a fixed n, we set

λ(n) := min{p | S(n, p) is an SSD-set}.
With the aid of a computer, we have the following Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ(n) 1 1 2 2 3 4 4 4 5 5 5 6 6 6 6

16 17 18 19 20 21 22 23 24 25 26 27

7 7 7 7 8 8 9 9 9 9 9 9

Table 1. λ(n) for 1 ≤ n ≤ 27.

Remark 3. As Problem 1 (ii) indicates, it is not known whether, for exam-
ple, S(27, p) is an SSD-set for all p > 9.

2.3. Main result. Now we give an answer to Problem 1.

Theorem 4. If p ≥ n, then S(n, p) is an SSD-set.

3. Proof of Theorem 4

We prove Theorem 4 by induction on n.

Base case: Since S(1, p) = {1}, Theorem 4 holds for n = 1.

Induction step: We assume that S(n − 1, q) is an SSD-set for q ≥ n − 1.
We need to prove that S(n, p) is an SSD-set for p ≥ n. Using the inductive
hypothesis, it will suffice to find p which satisfies p ≥ n−1 and the following
Condition 5:

Condition 5 (Condition on p). We require that p satisfies the following
statement: Let X and Y be any subsets of S(n, p) satisfying the following
(i) and (ii):
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(i) X ∩ Y = ∅, and
(ii) np ∈ Y .

Then we require that ∑
x∈X

x ̸=
∑
y∈Y

y.

In order to find p which satisfies Condition 5, note that if p satisfies

n−1∑
k=1

kp < np, (4)

then p satisfies Condition 5. We study which p satisfies (4). Considering
the lower Riemann sum, we have

n−1∑
k=1

kp <

∫ n

1
xp dx. (5)

We consider the following inequality:∫ n

1
xp dx < np (6)

Thanks to (5), if p satisfies (6), then p satisfies (4).
We shall prove that if p ≥ n, then (6) holds. In fact,∫ n

1
xp dx =

np+1 − 1

p+ 1
<

np+1

p
≤ np+1

n
= np.

Now we have proved that when p ≥ n, (6) holds. Hence (4) also holds.
Consequently, Theorem 4 holds.

4. Conclusions

We show that there are two reasons why our bound p ≥ n in Theorem
4 is far from being the sharp bound. To study concretely, we consider the
case n = 20. By Table 1, S(20, p) is an SSD-set when p = 8.

The first reason. In order to avoid the difficulty of considering all
subsets of S(20, p), we replace the SSD-condition by (4). More precisely, we
have shown that if p satisfies

19∑
k=1

kp < 20p, (7)

then S(20, p) is an SSD-set. Note that (7) is only a sufficient condition, but
far from being the necessary condition for S(20, p) to be an SSD-set.

The second reason. Direct computations show that (7) holds for

p ≥ 13. (8)
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But since the computations are troublesome, we proceeded the argument
that if p satisfies ∫ 20

1
xp dx < 20p, (9)

then p satisfies (7). We obtain from (9) that (7) holds for

p ≥ 20. (10)

Note that (8) and (10) have difference.
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