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Abstract

Let E be an elliptic curve defined over a number field, the conjecture of
Birch and Swinnerton-Dyer (BSD, for short) asserts a deep relation between
the group E(K) of rational points and the L−function L(E/K, s) of E at
s = 1. Very few explicit results about E(K) and L(1) are known, even no
general method is known to determine L(1) vanishing or not for a given elliptic
curve. In this paper, we study some quantities related to BSD of a special
class of elliptic curves, more precisely, we study the arithmetic of quadratic
twists of elliptic curves y2 = x(x+εp)(x+εq) and their L−function. Based on
some classical works, especially those of Greenberg, Kramer-Tunnell, Kato-
Rohrlich, Manin and Mazur, under some conditions, we obtain results about
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the vanishing of the value at s = 1 of the L-function, and explicitly determine
the following quantities: the norm index δ(E,Q,K), the root numbers, the
set of anomalous prime numbers, a few prime numbers at which the image
of Galois representation are surjective. We also study the relation between
the ranks of the Mordell-Weil groups, Selmer groups and Shafarevich-Tate
groups, and the structure about the l∞−Selmer groups and the Mordell-Weil
groups over Zl−extension via Iwasawa theory. These results provide some
useful evidence toward verifying the BSD for a family of elliptic curves.

Keywords: Elliptic curve, L−function, quadratic twist, Selmer
group, Shafarevich-Tate group, root number, local norm index, Iwasawa
theory, BSD conjecture

2010 Mathematics Subject Classification: 11G05 (primary), 14H52,
14G05, 14G10 (Secondary).

1 Introduction

Let E be an elliptic curve over a number field K, and L(E/K, s) be the L−function

of E over K. By Mordell-Weil theorem (see, e.g. [Sil1]), the set E(K) of K−rational

points of E is a finitely generated abelian group. Hence

E(K) ≃ Zr
⊕

E(K)tors,

where r = rank(E(K)) ≥ 0 is the rank of E over K, and E(K)tors is the torsion

subgroup of E(K).

Conjecture 1.1 (see [Sil1]). The L−function L(E/K, s) of E over K has an

analytic continuation to the entire complex plane, and satisfies a functional equation

relating the values at s and 2− s.

This conjecture was proved when K = Q (see [BCDT], [TW], [Wi]).

The conjecture of Birch and Swinnerton-Dyer (BSD, for short) for elliptic curves

states that

Conjecture 1.2 (Birch and Swinnerton-Dyer conjecture, see [Sil1]).

(1) The rank of E(K) equals the order of vanishing of L(E/K, s) at s = 1.

(2)

lim
s→1

L(E/K, s)

(s− 1)r
=

Ω · ♯⨿⨿(E/K) ·R(E/K) ·
∏

v|N cv(E)

♯E(K)2tors
,

where r = rankE(K),Ω = the real period, E(K)tors is the torsion subgroup of

E(K), R(E/K) is the regulator ofE(K)/E(K)tors,N is the conductor of E/K, cv(E) =
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[E(Kv) : E0(Kv)] is the Tamagawa number of E at the place v, ⨿⨿ (E/K) is the

Shafarevich-Tate group of E over K, which is conjectured to be a finite group.

In the literature, much important progress has been made about the BSD conjec-

ture. For example, for elliptic curves over the rational number field Q, let ran(E/Q)

denote the order of vanishing of L(E/Q, s) at s = 1. Then one current state of the

BSD conjecture is expressed by the result:

Theorem 1.3 (Gross-Zagier, Kolyvagin, etc., see [Kol3]). The equality rankE(Q) =

ran(E/Q) holds and ♯⨿⨿(E/Q) is finite if ran(E/Q) ≤ 1.

Yet, at present, to explicitly determine the arithmetic quantities such as E(K) and

the order of L(E/K, s) at s = 1 are generally not easy, even for the question about

determining whether the value L(E/K, 1) vanishing or not.

In this paper, we will study explicitly L(1) and some related arithmetic quantities

about twists of a family of elliptic curves E over the rational number field Q, from

which, for example, we obtain that L(Ed/Q, 1) = 0 for many quadratic twists Ed of

E. More precisely, we consider the elliptic curves

E = Eε : y2 = x(x+ εp)(x+ εq), (ε = ±1), (1.1)

and their quadratic D−twist

ED = Eε
D : y2 = x(x+ εpD)(x+ εqD), (1.2)

where p and q are odd prime numbers with q−p = 2, and D = D1 · · ·Dn is a square-

free integer with distinct odd prime numbers D1, · · · , Dn satisfying (pq,D) = 1.

When D = 1, E1 = E, and for ε = 1 (resp. −1), we sometimes write Eε = E+

(resp. E−). By Tate’s algorithm (see [Ta], [Sil2]), the discriminant, j−invariant and

conductor of ED/Q are obtained as follows, respectively

∆ = 64p2q2D6, j =
64(p2 + 2q)3

p2q2
, NED

= 25pqD2. (1.3)

So the equation (1.2) above is a global minimal Weierstrass equation for ED over the

rational number field Q. Moreover, ED/Q has additive reduction at 2, D1, · · · , Dn,

has multiplicative reduction at p, q, and has good reduction at other finite places.

In the following, we study the arithmetic of these elliptic curves. The following

quantities are explicitly determined: the norm index δ(E,Q, K) (see Theorem 3.3),
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the root numbers (see Theorem 5.3), the set of anomalous prime numbers (see

Proposition 2.4), a few prime numbers at which the image of Galois representation

are surjective (see Proposition 2.7). The relation between the ranks of the Mordell-

Weil groups, Selmer groups and Shafarevich-Tate groups, and the structure about

the l∞−Selmer groups and the Mordell-Weil groups over Zl−extension via Iwasawa

theory are studied (see Propositions 3.1, 4.1, 4.2, and Theorems 3.4, 3.7, 3.8, 4.3,

4.4). On L(1), one of our main result is as follows

Theorem 1.4 (see Theorem 5.5 below) Let E = Eε be the elliptic curve in (1.1)

and letK = Q(
√
µD) be the quadratic number field with D in (1.2) and µ = ±1.We

assume that D ≡ µ (mod 4). Let L(E/Q, s) = Σ∞
n=1a1(n)n

−s be the L−function as

above. Let EµD/Q be the quadratic (µD)−twist of E/Q, and χK be the quadratic

Dirichlet character associated to K.

(1) Assume one of the following two hypotheses holds:

(a) ε = 1 and p ≡ 5, 7 (mod 8);

(b) ε = −1 and p ≡ 3, 5 (mod 8).

Then L(E/Q, 1) = 2Σ∞
n=1

a1(n)
n

e−nπ/2
√
2pq.

further, for all integer r ≥ 0,

L(r)(E/Q, 1) = 2πΣ∞
n=1a1(n)

∫ ∞

1/4
√
2pq

[logr t+ (−1)r logr(25pqt)]e−2nπtdt. also,

L(EµD/Q, 1) = (1 + χK(−2pq)) · Σ∞
n=1

a1(n)

n
χK(n) · e−nπ/2D

√
2pq,

In particular, if χK(−2pq) = −1, then L(EµD/Q, 1) = 0.

(2) Assume one of the following two hypotheses holds:

(a′) ε = 1 and p ≡ 1, 3 (mod 8);

(b′) ε = −1 and p ≡ 1, 7 (mod 8).

Then L(E/Q, 1) = 0,

further, for all integer r ≥ 0,

L(r)(E/Q, 1) = 2πΣ∞
n=1a1(n)

∫ ∞

1/4
√
2pq

[logr t+ (−1)r+1 logr(25pqt)]e−2nπtdt. also,

L(EµD/Q, 1) = (1− χK(−2pq)) · Σ∞
n=1

a1(n)

n
χK(n) · e−nπ/2D

√
2pq.

In particular, if χK(−2pq) = 1, then L(EµD/Q, 1) = 0.

(For some concrete example on L(1), see Example 5.6 below).
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These results, together with some former results about Mordell-Weil groups and

Selmer groups as in [QZ1] and [LQ], provide some useful evidence toward verifying

the BSD for a family of elliptic curves, which we will discuss in a separate paper.

Organisation of the paper. Section 2 includes some basic facts on reduction from

Tate’s algorithm, and some results on anomalous prime, ramification and Galois rep-

resentation deduced from the works of Mazur, Bahargava-Skinner-Zhang and Serre.

In Section 3, by using Kramer’s method and Kramer-Tunnell’ formula, and the for-

mer results in [Q1], [QZ1], we compute the norm index, Tamagawa number, Selmer

group, rank, and some congruences between rank and Shafarevich-Tate group. In

Section 4, following mainly the works of Mazur, Greenberg and Kato-Rohrlich, we

study the structure about the l∞−Selmer groups and the Mordell-Weil groups over

Zl−extension via Iwasawa theory. Finally, in Section 5, by results of Rohrlich, we

compute the root numbers, and by using a formula of Manin on L(1), we obtain

some results on the vanishing of the value at s = 1 of the L-function.

2 Reduction, ramification and Galois representa-

tion

In the following, unless otherwise stated, every conclusion for the elliptic curves ED

in (1.2) also holds for E1 = E in (1.1) when take D = 1. For a prime number l and

an integer m, (m
l
) is the usual Legendre quadratic residue symbol.

Lemma 2.1 Let ED/Q be the elliptic curve in (1.2) above.

(1) At each prime l | NED
, the Kodaira type is as follows:

III for l = 2; I2 for l = p or q; and I∗0 for l = D1, · · · , Dn, respectively.

The Tamagawa number cl is as follows:

cl = 2 for l = 2, p, q; and cl = 4 for l = D1, · · · , Dn.

(2) ED has split multiplicative reduction at p if and only if (2εD
p
) = 1.

(3) ED has split multiplicative reduction at q if and only if (−2εD
q

) = 1.

(4) Let l be a prime number such that l ∤ 2pqD. Then ED has good supersingular

reduction at l if and only if
∑(l−1)/2

m=0

(
l−1
2
m

)2

pmq
l−1
2

−m ≡ 0 (mod l).

(5) The torsion subgroup ED(Q)tors ∼= Z/2Z × Z/2Z, and for D = 1, we have

E(F )tors ∼= Z/2Z× Z/2Z for any quadratic number field F.
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(6) Assume 3 ∤ pqD. Let F be a number field, and let p be a prime ideal of F lying

over 3, let e = e(p/3) and f = f(p/3) be the ramification index and residue degree,

respectively. Then we have

(6a) if e(p/3) = f(p/3) = 1, then ED(F )tors ∼= Z/2Z× Z/2Z;
(6b) if f(p/3) = 1 and ED has additive reduction at some finite places of F lying

over 2, then ED(F )tors ∼= Z/2Z× Z/2Z or Z/2Z× Z/6Z;
(6c) if f(p/3) = 1, then ED(F )tors/ED(F )[3∞] ∼= Z/2Z × Z/2Z, where ED(F )[3∞]

denotes the 3−primary component of ED(F )tors;

(6d) If ED has an additive reduction at some finite places of F lying over 2, then

♯ED(F )tors = 2m or 2m · 3 for some m ∈ Z≥0.

Proof. (1) is a consequence of direct calculation by the Algorithm of [Ta]; (2),

(3) and (4) are easily obtained (see [Sil1] for the methods); (5) follows from Lemma

2 and Lemma 4 of [QZ2]; (6) is similar to the Prop.1 in [QZ1, p.1374]. □

Particularly, by (2) and (3) of Lemma 2.1, one can easily see that, E+ has split

multiplicative reduction at both p and q if p ≡ 1, 7 (mod 8), and has non-split

multiplicative reduction at both p and q if p ≡ 3, 5 (mod 8); Also, E− has split

multiplicative reduction at p and non-split multiplicative reduction at q if p ≡
1, 3 (mod 8), and has non-split multiplicative reduction at p and split multiplicative

reduction at q if p ≡ 5, 7 (mod 8).

Corollary 2.2. For the elliptic curves ED/Q in (1.2) above,

(1) ED has good supersingular reduction at 3 if 3 ∤ pqD;

(2) ED has good ordinary reduction at 5 if 5 ∤ pqD;

(3) ED has good ordinary reduction at 7 if 7 ∤ pqD and p ≡ 1, 4 (mod 7);

(4) ED has good supersingular reduction at 7 if 7 ∤ pqD and p ≡ 2, 3, 6 (mod 7).

Proof. Follows easily from the above Lemma 2.1(4). □

For an elliptic curve E/Q and a prime number l, we denote the reduction of E

at l by Ẽl, and let al = l + 1 − ♯Ẽl(Fl), where Fl is the field with l elements. For

a positive integer m, E[m] = {P ∈ E(Q) : mP = 0} is the group of m−division

points of E, where Q is an algebraic closure of Q. Let GQ = Gal(Q/Q) be the

absolute Galois group, and let ρl : GQ −→ Gl2(Fl) be the Galois representation of

GQ given by the action of GQ on the l−division points of E (see, e.g., [Sil1, p.90]).

By the open image theorem of Serre ([Se1]), ρl is surjective for all but finitely many

6



prime numbers l.

Lemma 2.3. For the elliptic curves ED/Q in (1.2) above,

(1) if 3 ∤ pqD, then ♯ẼD,3(F3) = 4 and a3 = 0.

(2) if 7 ∤ pqD, and p ≡ 2, 3, 6 (mod 7), then ♯ẼD,7(F7) = 8 and a7 = 0.

(3) assume 5 ∤ pqD,

(3a) if p ≡ 1, 2 (mod 5), then

♯ẼD,5(F5) =

{
4 if D ≡ 1, 4 (mod 5)
8 if D ≡ 2, 3 (mod 5), and a5 =

{
2 if D ≡ 1, 4 (mod 5)
−2 if D ≡ 2, 3 (mod 5),

(3b) if p ≡ 4 (mod 5), then

♯ẼD,5(F5) =

{
8 if D ≡ 1, 4 (mod 5)
4 if D ≡ 2, 3 (mod 5), and a5 =

{
−2 if D ≡ 1, 4 (mod 5)
2 if D ≡ 2, 3 (mod 5).

(4) assume 7 ∤ pqD,

(4a) if

{
ε = 1
p ≡ 1 (mod 7) or

{
ε = −1
p ≡ 4 (mod 7), then

♯ẼD,7(F7) =

{
12 if D ≡ 1, 2, 4 (mod 7)
4 if D ≡ 3, 5, 6 (mod 7), and a7 =

{
−4 if D ≡ 1, 2, 4 (mod 7)
4 if D ≡ 3, 5, 6 (mod 7),

(4b) if

{
ε = 1
p ≡ 4 (mod 7) or

{
ε = −1
p ≡ 1 (mod 7), then

♯ẼD,7(F7) =

{
4 if D ≡ 1, 2, 4 (mod 7)
12 if D ≡ 3, 5, 6 (mod 7), and a7 =

{
4 if D ≡ 1, 2, 4 (mod 7)
−4 if D ≡ 3, 5, 6 (mod 7).

(5) ♯ẼD,2(F2) = 3, ♯ẼD,
Di
(FDi

) = Di + 1 (i = 1, · · · , n),

♯ẼD,p(Fp) =

{
p if (2εD

p
) = 1

p+ 2 if (2εD
p
) = −1,

and ♯ẼD,q(Fq) =

{
q if (−2εD

q
) = 1

q + 2 if (−2εD
q

) = −1.

Proof. Via direct calculation. □

Recall that a prime number l is said to be anomalous for an elliptic curve E/Q if

E has good reduction at l and ♯Ẽl(Fl) ≡ 0 (mod l) (see [Ma2, p.186] and [M, p.25]).

We denote Anom(E/Q) = {l : l is an anomalous prime number for E/Q}.

Proposition 2.4. For the elliptic curves ED/Q in (1.2) above, we have Anom(ED/Q) =

∅.

Proof. Since the conductorNED
= 25pqD2, we have 2, p, q,Di /∈ Anom(ED/Q) (i =

1, · · · , n). On the other hand, by Lemma 2.1(5) above, ED(Q)tors ∼= Z/2Z× Z/2Z,
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so by the results 2.10(b) of [M, p.26] we have Anom(ED/Q) ⊂ {2, 3, 5}, and so

Anom(ED/Q) ⊂ {3, 5}. For l = 3 or 5, we may assume that l ∤ pqD, then by Lemma

2.3(1) and (3) above, we have ♯ẼD,3(F3) = 4 and ♯ẼD,5(F5) = 4 or 8, which shows

that 3, 5 /∈ Anom(ED/Q), so Anom(ED/Q) = ∅. □

For our next discussion, we need the following

Lemma 2.5 (see [BSZ, p.4] and [Sil2, Prop.6.1 and exer.V.5.13]). Let E be an

elliptic curve over Q with conductor NE. Let l, l
′ be two prime numbers with l ̸= l′.

Suppose l ∥ NE. Then E[l′] is ramified at l if and only if l′ ∤ ordl(∆l) for a minimal

discriminant ∆l of E at l.

Proposition 2.6. For the elliptic curves ED/Q in (1.2) above , let l be a prime

number. Then

(1) ED[l] is ramified at p if and only if l > 2 and l ̸= p;

(2) ED[l] is ramified at q if and only if l > 2 and l ̸= q.

In particular, ED[p] is ramified at q, and ED[q] is ramified at p.

Proof. Since the equation in (1.2) above is global minimal for ED/Q, we have

∆l = ∆ = 64p2q2D6 for any prime number l, so

ordl(∆l) =

{
0 if l ∤ 2pqD
6 if l | 2D
2 if l = p or q.

On the other hand, the conductor NED
= 25pqD2, so a prime number l ∥ NED

⇔
l = p or q. By the above discussion, ordp(∆p) = ordq(∆q) = 2, so the conclusion

follow from the above Lemma 2.5. □

Proposition 2.7. For the elliptic curves ED/Q in (1.2) above, let l be a prime

number, and ρl be the corresponding Galois representation.

(1) If 3 ∤ pqD, then ρ3 is surjective, i.e., ρ3(GQ) = Gl2(F3).

(2) If 7 ∤ pqD and p ≡ 2, 3, 6 (mod 7), then ρ7 is surjective, i.e., ρ7(GQ) = Gl2(F7).

(3) If 3 ∤ pqD, l ∤ pqD and l > 3105, then ρl is surjective, i.e., ρl(GQ) = Gl2(Fl).

Proof. (1) Under the assumption, by Cor.2.2(1) above, ED has good supersin-

gular reduction at 3; also, the discriminant ∆ = (2D)6(pq)2 is obviously not a cube,

so the conclusion follows from Serre’s theorem (see [Se1] or [PR, Prop.4.4]).

(2) Under the assumption, by Cor.2.2(4) above, ED has good supersingular reduc-

tion at 7; also, since the conductor NED
= 25pqD2 and the invariant j = 64(p2+2q)3

p2q2
,
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we have p ∥ N and ordp(j) = −2 ̸≡ 0 (mod 7). So the conclusion follows from Serre’s

theorem (see [Se1] or [PR, Prop.4.4]).

(2) Under the assumption, 3 is the smallest (odd) prime number at which ED has

good reduction. Also, j /∈ Z and ordp(j) = −2 < 0. Moreover, the prime number

l under our assumption obviously satisfies l > (
√
3 + 1)8. So the conclusion follows

from Prop.24 of [Se1]. □

3 Rank, norm index, Shafarevich-Tate group and

l−Selmer group

Let E/Q be the elliptic curve in (1.1) above, and let K = Q(
√
D) be the quadratic

number field, where D = D1 · · ·Dn with distinct odd prime numbers D1, · · · , Dn as

in (1.2) above. Let MK be a complete set of places on K, and M∞
K (resp. M0

K) its

subset of infinite (resp. finite) places. Let SK = M∞
K ∪ {v ∈ M0

K : v | 2pq}. The
group of SK−units of K is denoted by UK,S, the ideal class group of K is denoted

by Cl(K), and the SK−class group of K is denoted by ClS(K), precisely, ClS(K) is

the quotient of Cl(K) by the subgroup generated by the classes represented by the

finite primes in SK (see [Sa, p.127]). For an abelian group A and a positive integer

m, we write A[m] = {a ∈ A : ma = 0}. For a vector space V over F2, we denote its

dimension by dim2V. For a finitely generated abelian group A, we denote its rank

by rank(A). The next result is about E(K), the group of rational points of E over

K.

Proposition 3.1. Let E/Q be the elliptic curve in (1.1), and K = Q(
√
D) be

the quadratic number field as above, we have rank(E(K)) ≤ 14 + 2dim2ClS(K)[2].

Proof. Let E ′ : y2 = x3 − 2ε(p+ q)x2 + 4x. There is an isogeny φ of degree 2

between E and E ′ with the dual isogeny φ̂ as in [QZ1, pp.1372,1373]. Let Selφ(E/K)

and Selφ̂(E
′/K) be the φ−Selmer group of E/K and the φ̂−Selmer group of E ′/K,

respectively, and ⨿⨿ (E/K) (resp. ⨿⨿ (E ′/K) be the Shafarevich-Tate groups of

E/K (resp. E ′/K) (see [Sil1, Chapt.10]). Then (see [Sil1, pp298, 301])

dim2E(K)/2E(K) + dim2E
′(K)[φ̂]/φ(E(K)[2])

= dim2Selφ(E/K)− dim2 ⨿⨿(E/K)[φ] + dim2Selφ̂(E
′/K)− dim2 ⨿⨿(E ′/K)[φ̂].
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Note that E ′(K)[φ̂] = {O, (0, 0)}, φ(E(K)[2]) = {O, (0, 0)}, so rank(E(K)) ≤
dim2Selφ(E/K) + dim2Selφ̂(E

′/K) − 2. On the other hand, the following exact se-

quence is known (see, e.g., [St, p.5], [Sz, p.55]): 0 → UK,S/U
2
K,S → K(SK , 2) →

ClS(K)[2] → 0, where,K(SK , 2) = {bK∗2 ∈ K∗/K∗2 : ordv(b) ≡ 0 (mod 2) for all v /∈
SK}. So by the Dirichlet unit theorem (see [L, pp.104, 105]), we have dim2K(SK , 2) =

♯SK + dim2ClS(K)[2] ≤ 8 + dim2ClS(K)[2] because ♯SK = ♯M∞
K + ♯{v ∈ M0

K : v |
2pq} ≤ 2+6 = 8. Also, ♯Selφ(E/K) ≤ ♯K(SK , 2) and ♯Selφ̂(E

′/K) ≤ ♯K(SK , 2) (see

[Sil1, p.302]), so from the above discussion, rank(E(K)) ≤ 2dim2K(SK , 2) − 2 ≤
14 + 2dim2ClS(K)[2]. □

Next, we need state some notations. Let F be a number field and L be a

quadratic extension of F, we write MF (resp.ML) for a complete set of places on F

(resp.L). Fix a place w ∈ ML lying above v for each v ∈ MF . Denote the Galois

group Gal(Lw/Fv) by Gw, where Fv and Lw are the completions of F at v and L

at w, respectively. Let E be an elliptic curve over F. For every v ∈ MF , we denote

δv = log2(E(Fv) : N(E(Lw))), this is the local norm index studied deeply in [Kr] and

[KT]. For some of their arithmetic application (see,e.g., [MR], [Q1]). Let δ(E,F, L)

be the sum of all the local norm index, i.e., δ(E,F, L) =
∑

v∈MF
δv. Now, for the

elliptic curve E/Q in (1.1) and the quadratic number field K = Q(
√
D) as above, we

come to calculate explicitly the quantity δ(E,Q, K) as in [Q1, p.5054, and Section

3 there], and give some application.

Lemma 3.2. Let E/Q be the elliptic curve in (1.1), µ = ±1, and K = Q(
√
µD)

be the quadratic number field with square-free integer D = D1 · · ·Dn as in (1.2)

above. Fix a place w ∈ MK lying above 2. Let ∆w, cw and fw be the minimal

discriminant, Tamagawa number and the exponent of the conductor of E at w (i.e.,

over Kw)(see [Sil1]), respectively.

(1) If D ≡ 5µ(mod8), then Kw
∼= Q2(

√
−3), and

Type III, ordw(∆w) = 6, fw = 5, and cw = 2.

(2) If D ≡ 7µ(mod8), then Kw
∼= Q2(

√
−1), and

Type I∗2 , ordw(∆w) = 12, fw = 6, and cw =

{
2 if p ≡ 1(mod4)
4 if p ≡ 3(mod4).

(3) If D ≡ 3µ(mod8), then Kw
∼= Q2(

√
3), and

Type I∗2 , ordw(∆w) = 12, fw = 6, and cw =

{
4 if p ≡ 1(mod4)
2 if p ≡ 3(mod4).

Proof. For the case µD ≡ 3, 5, 7(mod8), from the proof of Lemma3.1 in [Q1,
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p.5057], we have Kw
∼= Q2(

√
−3) ⇐⇒ µD ≡ 5 (mod 8); Kw

∼= Q2(
√
−1) ⇐⇒

µD ≡ 7 (mod 8); Kw
∼= Q2(

√
3) ⇐⇒ µD ≡ 3 (mod 8). Then the conclusion follows

from Tate’s algorithm (see [Ta], [Sil2]), in a way as done in the proof of Lemma3.1

of [Q1, p.5057]. □

Theorem 3.3. Let E/Q be the elliptic curve in (1.1), µ = ±1, and K =

Q(
√
µD) be the quadratic number field with square-free integer D = D1 · · ·Dn as in

(1.2) above. Denote µ0 = (1−µ)/2. Then we have 2n+µ0 ≤ δ(E,Q, K) ≤ 2n+4+µ0.

More precisely,

(1) δ(E,Q, K) = 2n+ µ0 if and only if D ≡ µ(mod8) and (µD
p
) = (µD

q
) = 1.

(2) δ(E,Q, K) = 2n + 1 + µ0 if and only if one of the following four hypotheses

holds :

(2a) D ≡ 5µ(mod8) and (µD
p
) = (µD

q
) = 1;

(2b) D ≡ 7µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
) = 1;

(2c) D ≡ 3µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
) = 1;

(2d) D ≡ µ(mod8) and (µD
p
) + (µD

q
) = 0.

(3) δ(E,Q, K) = 2n+2+µ0 if and only if one of the following six hypotheses holds:

(3a) D ≡ 7µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
) = 1;

(3b) D ≡ 3µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
) = 1;

(3c) D ≡ 5µ(mod8) and (µD
p
) + (µD

q
) = 0;

(3d) D ≡ 7µ(mod8), p ≡ 3(mod4) and (µD
p
) + (µD

q
) = 0;

(3e) D ≡ 3µ(mod8), p ≡ 1(mod4) and (µD
p
) + (µD

q
) = 0;

(3f) D ≡ µ(mod8) and (µD
p
) = (µD

q
) = −1.

(4) δ(E,Q, K) = 2n + 3 + µ0 if and only if one of the following five hypotheses

holds:

(4a) D ≡ 7µ(mod8), p ≡ 1(mod4) and (µD
p
) + (µD

q
) = 0;

(4b) D ≡ 3µ(mod8), p ≡ 3(mod4) and (µD
p
) + (µD

q
) = 0;

(4c) D ≡ 5µ(mod8) and (µD
p
) = (µD

q
) = −1;

(4d) D ≡ 7µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
) = −1;

(4e) D ≡ 3µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
) = −1.

(5) δ(E,Q, K) = 2n + 4 + µ0 if and only if one of the following two hypotheses

holds:

(5a) D ≡ 7µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
) = −1;
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(5b) D ≡ 3µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
) = −1.

Proof. We consider the case µ = 1, the other case is similar. Let S be

the set of finite places of Q obtained by collecting together all places that ramify

in K/Q and all places of bad reduction for E/Q, so S = {2, p, q,D1 · · ·Dn}. Al-
though the cases here become more complicated, we will take our calculation in a

way as in the Lemma 3.2 of [Q1, p.5058], so we need to use the same notations

S0, Sg, Sgu, Sar, Sa, Ssmr, Snsmr, S
′
nsmr, S

′′
nsmr as in the Remark of [Q1, pp.5055,5056].

For the convenience of the reader, we write them in the present case as:

S0 = {v ∈ S : v is ramified or inertial in K};
Sg = {v ∈ S0 : v ∤ 2 and E has good reduction at v} = {D1, · · · , Dn};
Sgu = {v ∈ S0 : v | 2, E has good reduction at v and Qv is unramified over Q2}
= ∅;
Sar = {v ∈ S0 : E has additive reduction at v} =

{
{2} if D ≡ 3, 5, 7(mod8)
∅ if D ≡ 1(mod8);

Sa = Sar ∪ {v ∈ S0 : v | 2, E has good reduction at v and Qv is ramified over Q2}
= Sar;

Ssmr = {v ∈ S0 : E has split multiplicative reduction at v} ⊂ {p, q} ∩ S0;

Snsmr = {v ∈ S0 : E has non-split multiplicative reduction at v}
= S ′

nsmr ⊔ S ′′
nsmr (the disjoint union) ⊂ {p, q} ∩ S0, where

S ′
nsmr = {v ∈ Snsmr : v is inertial in K} = Snsmr,

S ′′
nsmr = {v ∈ Snsmr : v is ramified in K} = ∅.

Obviously, S0 = Sg ⊔ Sgu ⊔ Sa ⊔ Ssmr ⊔ Snsmr (the disjoint union).

By definition, δ(E,Q, K) =
∑

v∈MQ
δv, where δv = log2(E(Qv) : N(E(Kw))) is

the local norm index. Furthermore, by the results in [Kr], one can obtain that

δ(E,Q, K) = δ∞ + δf , where δ∞ is as in [Q, p.5054], and δf = δg + δm + δa with

δg, δm, δa in [Q1, pp.5055,5056], that is,

δa =
∑
v∈Sa

δv; δm = δsmr + δnsmr with δsmr =
1

2

∑
v∈Ssmr

(1 + (∆v, D)Qv) and

δnsmr =
1

2

∑
v∈S′

nsmr

(
1 + (−1)v(∆v)

)
+

∑
v∈S′′

nsmr

(
1

2
(1 + (∆v, D)Qv) · (−1)v(∆v) + 1

)
;

δg =
∑
v∈Sg

dim2 Ẽv(kv)[2] +
∑
v∈Sgu

ε(v), where

ε(v) =


1
2

(
1− (−1)v(D)

)
· [Qv : Q2] if E has good supersingular reduction at v,

1
2
(3 + (∆v, D)Qv) if E has good ordinary reduction at v.

12



Here Ẽv is the reduction of E at v, kv is the residue field of Qv, and (, )Qv is the

Hilbert symbol (see [Se 2, Chapt.XIV]).

It is easy to see here that δ∞ = 0 since D > 0. So we only need to calculate δg, δm, δa.

For this, we divide our discussion into the following cases.

Case for δg. Since E has good reduction at each Di(i = 1, · · · , n), we have an

injective homomorphism E(Q)tors ↪→ ẼDi
(FDi

) (see [Kn, p.130]). So by Lemma

2.1(5) above, we have ẼDi
(FDi

)[2] ∼= (Z/2Z)2. and so

δg =
∑

l∈Sg
dim2 Ẽl(Fl)[2] =

∑n
i=1 dim2 ẼDi

(FDi
)[2] = 2n, i.e., δg = 2n.

Case for δm. Since the equation (1.1) is global minimal for E/Q, we have ordp(∆p) =

ordq(∆q) = 2, so 1 + (−1)ordl(∆l) = 2 for l = p or q, and so δnsmr = ♯Snsmr. Also

(∆p, D)Qp = (∆q, D)Qq = 1 because ∆p = ∆q = (8pq)2. So δsmr = ♯Ssmr. Hence

δm = ♯Ssmr + ♯Snsmr = ♯(S0 ∩ {p, q}) ≤ 2. The set S0 can be determined as follows.

If D ≡ 1(mod8), then S0 =


{D1, · · · , Dn, p} if (D

p
) = −1 and (D

q
) = 1

{D1, · · · , Dn, q} if (D
p
) = 1 and (D

q
) = −1

{D1, · · · , Dn} if (D
p
) = (D

q
) = 1

{D1, · · · , Dn, p, q} if (D
p
) = (D

q
) = −1;

If D ≡ 3, 5, 7(mod8), then S0 =


{2, D1, · · · , Dn, p} if (D

p
) = −1 and (D

q
) = 1

{2, D1, · · · , Dn, q} if (D
p
) = 1 and (D

q
) = −1

{2, D1, · · · , Dn} if (D
p
) = (D

q
) = 1

{2, D1, · · · , Dn, p, q} if (D
p
) = (D

q
) = −1.

From this, we get

δm =


0 if (D

p
) = (D

q
) = 1

1 if (D
p
) + (D

q
) = 0

2 if (D
p
) = (D

q
) = −1.

Case for δa. Since Sa = Sar is given above, we have

δa =
∑

v∈Sa
δv =

{
δ2 if D ≡ 3, 5, 7(mod8)
0 if D ≡ 1(mod8). So the remainder is to compute the

local norm index δ2 when D ≡ 3, 5, 7(mod8). So we assume now D ≡ 3, 5, 7(mod8).

By the Theorem 7.6 in [KT, p.332] (see also [Q1, p.5054]),

δ2 = log2

(
c2cD,2

cw

(
∥ ∆2∆D,2d(Kw/Q2)

−6 ∥Q2

∥ ∆w ∥Kw

)1/12
)
.

By Lemma 2.1(1) above, we have c2 = cD,2 = 2,∆D,2 = 64p2q2D6. Also, by the

results in [Q1, p.5058], we have d(Kw/Q2) =

{
D if D ≡ 5(mod8)
4D if D ≡ 3, 7(mod8). From

these discussion together with the results of cw and ∆w in Lemma 3.2 above, one

can work out δ2 as follows.

If D ≡ 5(mod8), then δ2 = 1;
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If D ≡ 7(mod8), then δ2 =

{
2 if p ≡ 1(mod4)
1 if p ≡ 3(mod4);

If D ≡ 3(mod8), then δ2 =

{
1 if p ≡ 1(mod4)
2 if p ≡ 3(mod4).

Now our conclusion follows. □

Recall that ⨿⨿ (E/K) is the Shafarevich-Tate group of E/K. We have the fol-

lowing explicit parity relation between rank(E(K)) and dim2 ⨿⨿(E/K)[2].

Theorem 3.4. Let E/Q be the elliptic curve in (1.1), µ = ±1, and K =

Q(
√
µD) be the quadratic number field with square-free integer D = D1 · · ·Dn as

in (1.2) above. Denote µ0 = (1− µ)/2. Then we have

(1) rank(E(K)) ≡ µ0+dim2⨿⨿(E/K)[2] (mod2) if one of the following six hypotheses

holds:

(1a) D ≡ µ(mod8) and (µD
p
) = (µD

q
);

(1b) D ≡ 3µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
);

(1c) D ≡ 3µ(mod8), p ≡ 1(mod4) and (µD
p
) + (µD

q
) = 0;

(1d) D ≡ 5µ(mod8) and (µD
p
) + (µD

q
) = 0;

(1e) D ≡ 7µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
);

(1f) D ≡ 7µ(mod8), p ≡ 3(mod4) and (µD
p
) + (µD

q
) = 0.

(2) rank(E(K)) ≡ µ0 + 1 + dim2 ⨿⨿(E/K)[2] (mod2) if one of the following six

hypotheses holds:

(2a) D ≡ µ(mod8) and (µD
p
) + (µD

q
) = 0;

(2b) D ≡ 3µ(mod8), p ≡ 1(mod4) and (µD
p
) = (µD

q
);

(2c) D ≡ 3µ(mod8), p ≡ 3(mod4) and (µD
p
) + (µD

q
) = 0;

(2d) D ≡ 5µ(mod8) and (µD
p
) = (µD

q
);

(2e) D ≡ 7µ(mod8), p ≡ 3(mod4) and (µD
p
) = (µD

q
);

(2f) D ≡ 7µ(mod8), p ≡ 1(mod4) and (µD
p
) + (µD

q
) = 0.

Proof. By Theorem 1 of [Kr, p.130], we have

rank(E(K)) ≡
∑

v∈MQ
δv+dim2⨿⨿(E/K)[2] = δ(E,Q, K)+dim2⨿⨿(E/K)[2] (mod2).

So the conclusion follows from Theorem 3.3 above. □

Corollary 3.5. Let E/Q and K be as in Theorem 3.4 above. If ♯⨿⨿(E/K)[2]

is a square integer, then under one of the conditions in (2) for µ = 1 (or in (1) for

µ = −1) of Theorem 3.4, we have rank(E(K)) > 0.

Proof. Obvious. □
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Now for an elliptic curve E over a number field F, and a positive integer m, let

Selm(E/F ) be the m−Selmer group of E/F (see [Sil1, Chapt.10]).

Corollary 3.6. For the elliptic curves E/Q in (1.1) and ED/Q in (1.2) above,

let µ and µ0 be as in Theorem 3.4 above. Then we have

(1) dim2Sel2(EµD/Q) ≡ µ0+dim2Sel2(E/Q) (mod2) if one of the six hypotheses in

(1) of Theorem 3.4 above holds.

(2) dim2Sel2(ED/Q) ≡ µ0+1+dim2Sel2(E/Q) (mod2) if one of the six hypotheses

in (2) of Theorem 3.4 above holds.

Proof. Let K = Q(
√
µD) be as in Theorem 3.4 above. By Kramer’s theorem

(see [MR, Thm.2.7]), we have

dim2Sel2(EµD/Q) ≡ dim2Sel2(E/Q)+ δ(E,Q, K) (mod2). So the conclusion follows

from Theorem 3.3 above. □

For an elliptic curve E/Q, let L(E/Q, s) be its L− function (see [Sil1]). We

denote its analytic rank by ran(E/Q), i.e., ran(E/Q) = ords=1L(E/Q, s), which is

the order of L(E/Q, s) vanishing at s = 1.

Theorem 3.7. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in (1.1)

when take D = 1). Assume that one of the following four hypotheses holds:

(1) p > 37 and the p−Selmer group Selp(ED/Q) is trivial;

(2) p > 37 and the q−Selmer group Selq(ED/Q) is trivial;

(3) 5 ∤ pqD, ED[5] is an irreducibleGQ−module, and the 5−Selmer group Sel5(ED/Q)

is trivial;

(4) 7 ∤ pqD, p ≡ 1, 4 (mod7), ED[7] is an irreducibleGQ−module, and the 7−Selmer

group Sel7(ED/Q) is trivial.

Then the rank and analytic rank of ED/Q are both equal to 0, i.e., rank(ED(Q)) =

ran(ED/Q) = 0.

Proof. First, assume (1) (resp. (2)), then

(a) ED has multiplicative reduction at both p and q;

(b) Since ED has no complex multiplication, by the work of [Ma1] (or see[Cha,

p.175]), for p > 37, both ED[p] and ED[q] are irreducible GQ−modules;

(c) By Prop.2.6 above, ED[p] is ramified at q, and ED[q] is ramified at p;

(d) By assumption, Selp(ED/Q) (resp. Selq(ED/Q) ) is trivial.

So all the conditions (a), (b), (c), (d) in Theorem 5 of [BSZ, p.3] hold, and the
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conclusion follows.

Next, assume (3) (resp. (4)), then

(a) By Cor.2.2 above, ED has good ordinary reduction at 5 (resp. 7);

(b) ED[5] (resp. ED[7]) is an irreducible GQ−module;

(c) By Prop.2.6 above, ED[5] (resp. ED[7]) is ramified at p;

(d) Sel5(ED/Q) (resp. Sel7(ED/Q)) is trivial.

So all the conditions (a), (b), (c), (d) in Theorem 5 of [BSZ, p.3] hold, and the

conclusion follows. □

Theorem 3.8. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in (1.1)

when take D = 1). Assume that one of the following two hypotheses holds:

(1) 5 ∤ pqD, ED[5] is an irreducibleGQ−module, and the 5−Selmer group Sel5(ED/Q)

has order 5;

(2) 7 ∤ pqD, p ≡ 1, 4 (mod7), ED[7] is an irreducibleGQ−module, and the 7−Selmer

group Sel7(ED/Q) has order 7.

Then the rank and analytic rank of ED/Q are both equal to 1, i.e., rank(ED(Q)) =

ran(ED/Q) = 1.

Proof. Assume (1) (resp. (2)), then

(a) By Cor.2.2 above, ED has good ordinary reduction at 5 (resp. 7);

(b) ED[5] (resp. ED[7]) is an irreducible GQ−module;

(c) By Prop.2.6 above, ED[5] (resp. ED[7]) is ramified at l for l = p or q;

(d) The conductor N of ED is obviously not square-free, and there are two distinct

prime factors l ∥ N (i.e., p, q) such that ED[5]) (resp. ED[7])is ramified at l;

(e) ED obviously has good reduction at 5 (resp. 7);

(f) Sel5(ED/Q) (resp. Sel7(ED/Q)) has order 5 (resp. 7.)

So all the conditions (a), (b), (c), (d), (e), (f) in Theorem 9 of [BSZ, p.4] hold, and

the conclusion follows. □

Remark. For the elliptic curve ED in Theorem 3.8 above, since its conductor

N = 25pqD2 has two distinct prime factors of order one, i.e., p and q, by Theorem

1.5 of [Zh, p.8], we know that the following two statements are equivalent:

(1) rank(ED(Q)) = 1 and ♯⨿⨿(ED/Q) < +∞;

(2) ran(ED/Q) = 1.
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4 Iwasawa theory for ED

Let E be an elliptic curve defined over a number field F, m be a positive integer

and l be a prime number. Then for any place v ∈ MF , we have the Kummer

homomorphisms

κv,m : E(Fv)⊗Z/mZ → H1(Fv, E[m]), and κv,l∞ : E(Fv)⊗Ql/Zl → H1(Fv, E[l∞]),

where Zl is the ring of l−adic integers and E[l∞] is the l−primary torsion subgroup

of E. Recall that the m−Selmer group Selm(E/F ) of E/F is defined as

Selm(E/F ) = ker{H1(F,E[m]) −→
∏

v∈MF
H1(Fv, E[m])/Im(κv,m)},

and the l∞−Selmer group Sell∞(E/F ) is defined as

Sell∞(E/F ) = ker{H1(F,E[l∞]) −→
∏

v∈MF
H1(Fv, E[l∞])/Im(κv,l∞)}.

Note that the l∞−Selmer group can be defined for E over any algebraic extension

M of Q (see [Gr, p.63]). There is a natural surjective homomorphism (see [Zh, p.3])

Sell(E/F ) −→ Sell∞(E/F )[l],

and the properties of Sell∞(E/F ) can sometimes be deduced from the ones of

Sell(E/F ) (see [BS, p.6]).

Let Q∞ be a Zl−extension, i.e., it is a Galois extension of Q such that Gal(Q∞/Q) ∼=
Zl, the additive group of l−adic integers. So we have Q∞ = ∪n≥0Qn, where for each

n,Qn is a cyclic extension of Q of degree ln and Q = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn ⊂ · · · .
We write Γ = Gal(Q∞/Q), and let γ ∈ Γ be a fixed topological generator. The

completed group ring Λ = Zl[[Γ]] ∼= Zl[[T ]], where the indeterminate T is identi-

fied with γ − 1. We write Γn = Gal(Q∞/Qn), then Γn = Γln . For the structure

of the Iwasawa algebra Λ, see [Wa]. For an elliptic curve E defined over Q, the

Pontryagin dual of its l∞−Selmer group Sell∞(E/Q∞) is denoted by X(E/Q∞) =

Hom(Sell∞(E/Q∞),Ql/Zl). It is a Λ−module via the natural action of Γ on the

group H1(Q∞, E[l∞]), and one says that Sell∞(E/Q∞) is Λ−cotorsion if X(E/Q∞)

is Λ−torsion (see [Gr, p.55]).

Now let ED/Q be the elliptic curve in (1.2) above (E1 = E in (1.1) when takeD =

1). Assume that the prime number l satisfies one of the following two hypotheses:

(1) l = 5 and 5 ∤ pqD;

(2) l = 7, 7 ∤ pqD, and p ≡ 1, 4(mod7).

Then by Cor.2.2 above, ED has good ordinary reduction at such l. So by Mazur’s
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control theorem (see [Gr, p.54]), the natural maps

Sell∞(ED/Qn) −→ Sell∞(ED/Q∞)Γn

have finite kernel and cokernel, of bounded order as n varies.

Such ED/Q also has multiplicative reduction at p and q, so for the prime number l

such that l = p, q or satisfies one of the above two hypotheses (1) and (2), by Kato-

Rohrlich’s theorem (see [Gr, p.55]), we know that Sell∞(ED/Q∞) is Λ−cotorsion.

Furthermore, under this hypothesis, we have the following results.

Proposition 4.1. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in

(1.1) when take D = 1). Let l be a prime number satisfying one of the following

two hypotheses:

(1) l = 5 and 5 ∤ pqD;

(2) l = 7, 7 ∤ pqD, and p ≡ 1, 4(mod7).

Then the map

Sell∞(ED/Q) −→ Sell∞(ED/Q∞)Γ

is surjective. If Sell∞(ED/Q) = 0, then Sell∞(ED/Q∞) = 0 also.

Proof. By Cor.2.2 above, ED has good ordinary reduction at such l; by Lemma

2.3 above, we have l ∤ ♯ẼD,l(Fl); and by Lemma 2.1, l ∤ cl′ for any prime number l′.

So the conditions (i), (ii), (iii) of Prop.3.8 in [Gr, p.80] hold (see also the Remark

there), and the conclusion follows. □

Proposition 4.2. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in

(1.1) when take D = 1). Let l be a prime number satisfying one of the following

three hypotheses:

(1) l = p or q;

(2) l = 5 and 5 ∤ pqD;

(3) l = 7, 7 ∤ pqD, and p ≡ 1, 4(mod7).

Then for all n ≥ 0, the map Sell∞(ED/Qn) −→ Sell∞(ED/Q∞) is injective. More-

over,

corankZl
(Sell∞(ED/Q∞)) ≡ corankZl

(Sell∞(ED/Q))(mod2).

Proof. Under our assumption, ED has good ordinary or multiplicative reduction

at l. Also, by the above discussion, we know that Sell∞(ED/Q∞) is Λ−cotorsion, so

the conclusion follows from the Prop.3.9 and Prop.3.10 of [Gr, pp.81, 82]. □
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Now for the elliptic curves ED/Q and the prime number l as in the above

Proposition 4.2, by Mazur and Swinnerton-Dyer’s construction, there is an element

L(ED/Q, T ) ∈ Λ⊗Zl
Ql with some interpolation property, from which one can define

the l−adic L− function Ll(ED/Q, s). For the general theory of l−adic L−function

of elliptic curves, see [MSD] and [Gr]. By Weierstrass’ preparation theorem, we

have L(ED/Q, T ) = lm1 · U(T ) · f(T ), where f(T ) is a distinguished polynomial,

U(T ) is an invertible power series and m1 ∈ Z. As in [GV, pp.19, 20], we write

f anal
ED

(T ) = lm1 · f(T ). On the other hand, since Sell∞(ED/Q∞) is Λ−cotorsion, i.e.,

X(ED/Q∞) is Λ−torsion, one has a pseudo-isomorphism

X(ED/Q∞) ∼ (⊕n
i=1Λ/(fi(T )

ai))⊕ (⊕m
j=1Λ/(l

bj)),

where fi(T ) are irreducible distinguished polynomials in Λ, and ai, bj are non-

negative integers. Then the characteristic polynomial for the Λ−moduleX(ED/Q∞)

is defined by f alg
ED

(T ) = lm2 ·
∏n

i=1 fi(T )
ai , where m2 =

∑m
j=1 bj. By Kato’s theorem

about the main conjecture (see [GV, p.21]), the polynomial f alg
ED

(T ) divides f anal
ED

(T )

in Ql[T ]. Moreover, by Greenberg’s theorem (see [Gr, p.61]), the characteristic ideal

of X(ED/Q∞) is fixed by the involution ι of Λ induced by ι(σ) = σ−1 for all σ ∈ Γ.

Theorem 4.3. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in (1.1)

when take D = 1). Let l be a prime number satisfying one of the following three

hypotheses:

(1) l = p or q;

(2) l = 5 and 5 ∤ pqD;

(3) l = 7, 7 ∤ pqD, and p ≡ 1, 4(mod7).

Then Sell∞(ED/Q∞) has no proper Λ−submodules of finite index. In particular, if

Sell∞(ED/Q∞) ̸= 0, then Sell∞(ED/Q∞) is finite.

Moreover, for l satisfying the hypothesis (2) or (3) here, if Sell∞(ED/Q) is finite,

then f alg
ED

(0) ∼ ♯Sell∞(ED/Q). Here, for a, b ∈ Q×
l , we write a ∼ b to indicate that a

and b have the same l−adic valuation.

Proof. By Lemma 2.1(5) above, the torsion subgroup ED(Q)tors ∼= Z/2Z ×
Z/2Z, so for the prime number l under our assumption, ED(Q)tors[l

∞] = 0. Also,

by the above discussion, we know that Sell∞(ED/Q∞) is Λ−cotorsion, so our first

conclusion follows from the Prop.4.14 of [Gr, p.102].

Next we come to show our second conclusion. As Sell∞(ED/Q∞) is Λ−cotorsion,
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let f alg
ED

(T ) be its characteristic polynomial as above, i.e., f alg
ED

(T ) is a generator

of the characteristic ideal of the Λ−module X(ED/Q∞), the Pontryagin dual of

Sell∞(ED/Q∞). Denote θn = γln − 1 = (1 + T )l
n − 1 ∈ Λ for each n ≥ 0. We

know, X(ED/Q∞)/θnX(ED/Q∞) is the Pontryagin dual of Sell∞(ED/Q∞)Γn , and

the torsion subgroup of X(ED/Q∞)/θnX(ED/Q∞) is then dual to

Sell∞(ED/Q∞)Γn/(Sell∞(ED/Q∞)Γn)div (see [Gr, p.82]),

In particular, X(ED/Q∞)/TX(ED/Q∞) is the Pontryagin dual of Sell∞(ED/Q∞)Γ.

As assumed, Sell∞(ED/Q) is finite, and so by the above discussion, Sell∞(ED/Q∞)Γ

is also finite, hence X(ED/Q∞)/TX(ED/Q∞) is finite. Therefore, T ∤ f alg
ED

(T ), so

f alg
ED

(0) ̸= 0. In the following, For an element c ∈ Zl, the highest power of l dividing

c is denoted by c(l).

Now we assume that l satisfies the hypothesis (2), i.e., l = 5 and 5 ∤ pqD. Then ED

has good ordinary reduction at 5, and by Lemma 2.3 above, ♯ẼD,5(F5) = 4 or 8. So

ẼD,5(F5)[5
∞] = 0. Also by Lemma 2.1, we have cl′ = 2 or 4 for any l′ | NED

, the

conductor of ED, and ED(Q)tors ∼= Z/2Z × Z/2Z. So c
(5)
l′ = 1 for any l′ | N, and

ED(Q)[5∞] = 0. Hence by Theorem 4.1 of [Gr, p.85], we get

f alg
ED

(0) ∼ (
∏

l′|NED

c
(5)
l′ ) · (♯ẼD,5(F5)[5

∞])2 · ♯Sel5∞(ED/Q)/(♯ED(Q)[5∞])2

= 1 · 12 · ♯Sel5∞(ED/Q)/12 = ♯Sel5∞(ED/Q),

i.e., f alg
ED

(0) ∼ ♯Sel5∞(ED/Q). The case for l satisfying the hypothesis (3) can be

similarly done, and the proof is completed. □

Remark. For the elliptic curve ED/Q in (1.2) above, for every prime number

l > 2, by Lemma 2.1 above, we have ED(Q)[l∞] = 0, so ED(Q∞)[l∞] = 0 because Γ

is pro-l (see [Gr, p.102, line -10]). so ED(Q∞)tors is a 2−group, i.e., its every element

is of 2−power order.

For the elliptic curve ED/Q as in (1.2) above, let ΩD be its Néron period. Now

we let l be a prime number satisfying one of the following two hypotheses:

(1) l = 3 and 3 ∤ pqD;

(2) l = 7, 7 ∤ pqD, and p ≡ 2, 3, 6(mod7).

Then by Cor.2.2 above, we know that ED has good supersingular reduction

at such l. By Lemma 2.1 above, we have cl′ = 2 or 4 for any prime number

l′ | NED
= 25pqD2, so our l ∤ Tam(ED/Q) =

∏
l′<∞ cl′ . Also by Prop.2.7 above,
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we have ρl(GQ) = Gl2(Fl). Therefore, if ordl(L(ED/Q, 1)/ΩD) = 0, then over the

Zl−extension Q∞/Q as above, by The Theorem 0.1 of [Ku, p.196], we have the

following conclusion:

(1) (⨿⨿ (ED/Q∞)[l∞])∧ ∼= Λ as Λ−modules, where (⨿⨿ (ED/Q∞)[l∞])∧ is the Pon-

tryagin dual of ⨿⨿ (ED/Q∞)[l∞];

(2) rank(ED(Qn)) = 0 and ♯ ⨿⨿(ED/Qn)[l
∞] = len with en = [ l

n+1

l2−1
− n

2
] for any

n ≥ 0;

(3) (⨿⨿ (ED/Qn)[l
∞])∧ ∼= Zl[Gal(Qn/Q)]/(θQn , vn−1,n(θQn−1)) as

Zl[Gal(Qn/Q)]−modules for any n ≥ 0, where θQn is the modular element of Mazur

and Tate (see [Ku] for the detail).

In fact, the Mordell-Weil group ED(Qn) in the above result (2) can be determined

as follows.

Theorem 4.4. Let ED/Q be the elliptic curve in (1.2) above (E1 = E in (1.1)

when take D = 1). Let l be a prime number satisfying one of the following two

hypotheses:

(1) l = 3 and 3 ∤ pqD;

(2) l = 7, 7 ∤ pqD, and p ≡ 2, 3, 6(mod7).

If ordl(L(ED/Q, 1)/ΩD) = 0, then over the Zl−extension Q∞/Q as above, we have

ED(Qn) ∼= Z/2Z× Z/2Z for all n ≥ 0.

Proof. By the above discussion, we know that rank(ED(Qn)) = 0. So ED(Qn) =

ED(Qn)tors. Since ED has good supersingular reduction at such l, ED(Q(µln+1)) does

not contain a point of order l for any n ≥ 0 (see [Ku, p.200, line-2]), where µln+1 is

the group of ln+1−th roots of unity. Since Q∞ is in fact the cyclotomic Zl−extension

of Q, we have Qn ⊂ Q(µln+1), and so ED(Qn)[l
∞] = 0 for any n ≥ 0. On the other

hand, l is totally ramified in Qn. Let pn be the unique prime ideal of Qn lying

over l, then the residue degree f(pn/l) = 1, and the residue field kpn = Fl. So if

l = 3, then by Lemma 2.1(6) above, we have ED(Qn)tors/ED(Qn)[3
∞] ∼= Z/2Z ×

Z/2Z, and then our conclusion follows because ED(Qn)[3
∞] = 0. If l = 7, then by

Lemma 4.2(1) of [QZ1, p.1379], we have ♯ED(Qn)tors | ♯ẼD,pn
(F7) · 72t7 for some

t7 ∈ Z≥0. By Lemma 2.3 above, ♯ẼD,pn
(F7) = 8. Also, by the above discussion,

7 ∤ ♯ED(Qn)tors. So ♯ED(Qn)tors | 8. Obviously, ED(Qn)tors ⊃ ED(Qn)[2] ∼= Z/2Z ×
Z/2Z, so ED(Qn)tors ∼= Z/2Z × Z/2Z or Z/2Z × Z/4Z. The remainder is to show
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that ED(Qn)tors ≇ Z/2Z× Z/4Z, and this follows from the following

Assertion. ED(Q(µ7n)) does not contain a point of order 4 for any n ≥ 0.

To see this, firstly, by Lemma 2.1 above, ED(Q)tors ∼= Z/2Z × Z/2Z, so we may

as well assume that n > 0. Obviously ED[2] = {O, (0, 0), (−εpD, 0), (−εqD, 0)}, so
ED(Q(µ7n)) contains a point P4 of order 4 if and only if 2P4 = (0, 0), (−εpD, 0)

or (−εqD, 0). And by Theorem 4.2 of [Kn, p.85], this is equivalent to say that

(we write F = Q(µ7n)): (a) εpD, εqD ∈ F 2; or (b) −εpD, 2εD ∈ F 2; or (c)

−εqD,−2εD ∈ F 2. But all of these cases are impossible because 7 is the unique

prime number which ramifies in F and 7 ∤ pq. So the above Assertion follows, and

the proof is completed. □

5 L−function, root number and parity conjecture

Let E/Q be the elliptic curve in (1.1), and its quadratic D−twist ED/Q in (1.2)

above. Let K = Q(
√
D) and K ′ = Q(

√
−D). The (−D)−twist of such E is

E−D = Eε
−D : y2 = x(x− εpD)(x− εqD). (5.1)

So, Eε
−D = E−ε

D .

As before, Let L(E/Q, s), L(ED/Q, s) and L(E−D/Q, s) be the L−functions of

E/Q, ED/Q and E−D/Q respectively, and write

L(E/Q, s) = Σ∞
n=1a1(n)n

−s, L(ED/Q, s) = Σ∞
n=1aD(n)n

−s,

L(E−D/Q, s) = Σ∞
n=1a−D(n)n

−s

with coefficients a1(n), aD(n), a−D(n) respectively. Let

Λ(E/Q, s) = (

√
NE

2π
)sΓ(s)L(E/Q, s), Λ(ED/Q, s) = (

√
NED

2π
)sΓ(s)L(ED/Q, s),

Λ(E−D/Q, s) = (

√
NE−D

2π
)sΓ(s)L(E−D/Q, s),

where NE, NED
and NE−D

are the conductors of E,ED and E−D, respectively. Since

these curves are modular over Q, their L−functions have analytic continuation to

C and satisfy functional equations (see [Sil1, p.362]):

Λ(E/Q, 2− s) = ωEΛ(E/Q, s), Λ(ED/Q, 2− s) = ωED
Λ(ED/Q, s),

Λ(E−D/Q, 2− s) = ωE−D
Λ(E−D/Q, s),
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where ωE, ωED
, ωE−D

∈ {1,−1} are the corresponding root numbers. Let χK and

χK′ be the quadratic Dirichlet characters associated toK andK ′, respectively. Then

if (d(K), 2NE) = 1, we have L(ED/Q, s) = L(E/Q, χK , s) (see, e.g., [Kol1, p.524],

[Kol2, p.475]). So L(E/K, s) = L(E/Q, s) ·L(E/Q, χK , s) = L(E/Q, s) ·L(ED/Q, s)

(see also [DFK, p.186]), from which their root numbers satisfy ωE/K = ωE/Q ·ωED/Q.

Similar for L(E−D/Q, s). We write

L(E/Q, χK , s) = Σ∞
n=1a1(n)χK(n)n

−s with coefficients a1(n)χK(n).

Lemma 5.1. Assume that (D, 2pq) = 1. Then for the above root numbers

ωE, ωED
and ωE−D

, we have

(1) if D ≡ 1(mod4), then ωED
= χK(−2pq)ωE.

(2) if D ≡ 3(mod4), then ωE−D
= χK′(−2pq)ωE.

Proof. The discriminants of the quadratic number fields K and K ′ are

d(K) =

{
D if D ≡ 1(mod4)
4D if D ≡ 3(mod4), and d(K ′) =

{
−4D if D ≡ 1(mod4)
−D if D ≡ 3(mod4),

respectively. If (d(K), NE) = 1, then ωED
= χK(−NE)ωE, and if (d(K ′), NE) = 1,

then ωE−D
= χK′(−NE)ωE (see [DFK, p.186]). Note that NE = 25pq, the conclusion

follows. □

The curve E/Q in (1.1) above is 2−isogeny to the following elliptic curve

E ′ : y2 = x3 − 2ε(p+ q)x2 + 4x, (5.2)

and the isogeny is as follows.

φ : E −→ E ′, (x, y) 7→ (x+ ε(p+ q) + pq · x−1, y − pqy · x−2).

This will be used in the following calculation of the root numbers. Obviously, the

conductor of E ′/Q is NE′ = NE = 25pq, and the discriminant is ∆E′ = 212pq. Firstly,

we need the following result.

Lemma 5.2. Let E ′/Q be the elliptic curve in (5.2) above.

(1) At each prime l | NE′ , the Kodaira type is as follows:

I∗3 for l = 2, and I1 for l = p or q.

(2) The Tamagawa number c2 = 2 or 4, more precisely,

c2 = 2 if one of the following three hypotheses holds:

(a) p ≡ 3(mod8); (b) ε = 1 and p ≡ 1(mod8); (c) ε = −1 and p ≡ 5(mod8).

c2 = 4 if one of the following three hypotheses holds:
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(a′) p ≡ 7(mod8); (b′) ε = 1 and p ≡ 5(mod8); (c′) ε = −1 and p ≡ 1(mod8).

(3) The Tamagawa numbers cp = cq = 1.

Proof. This is a consequence of direct calculation by the Algorithm of [Ta]. □

Now we come to calculate the root numbers.

Theorem 5.3. Let ωE be the root number of the the elliptic curve E/Q in

(1.1) above.

(1) If ε = 1, then ωE =

{
1 if p ≡ 5, 7 (mod 8)
−1 if p ≡ 1, 3 (mod 8);

(2) If ε = −1, then ωE =

{
1 if p ≡ 3, 5 (mod 8)
−1 if p ≡ 1, 7 (mod 8).

Proof. To begin with, from [Roh, p.122], we have ωE =
∏

l≤∞ ωl, where ωl = ±1

is the local root number. And by Prop.1 in [Roh1, p.123] one has ω∞ = −1,

so ωE = −
∏

l<∞ ωl. Since the conductor is NE = 25pq, for any prime number

l ̸= 2, p, q, E has good reduction at l, so by Prop.2(iv) in [Roh, p.126], we have

ωl = 1 for every such l. Also, since E/Q has multiplicative reduction at both p and

q, by discussion in Lemma 2.1 above, and by Prop.3(iii) in [Roh, p.132], we have

(1) ωp = ωq = 1 if ε = 1 and p ≡ 3, 5 (mod 8);

(2) ωp = ωq = −1 if ε = 1 and p ≡ 1, 7 (mod 8);

(3) ωp = −1, ωq = 1 if ε = −1 and p ≡ 1, 3 (mod 8);

(4) ωp = 1, ωq = −1 if ε = −1 and p ≡ 5, 7 (mod 8).

So the remainder is the most difficult factor ω2. To work out ω2, from [D], one can

obtain the following formula

ω2 = σφ(E/Q2) · (ε(p+ q),−pq)Q2 · (−2ε(p+ q), 4)Q2 ,

recall that (, )Q2 is the Hilbert symbol (see [Se2, p.206]), φ is the isogeny in (5.2)

above, and here,

σφ(E/Q2) = (−1)
ord2(

♯cokerφ2
♯kerφ2

)
= (−1)1+ord2♯cokerφ2 ,

where φ2 : E(Q2) −→ E ′(Q2) is the local homomorphism induced by φ. Since

(, )Q2 is biadditive, we have (−2ε(p + q), 4)Q2 = (−2ε(p + q), 2)2Q2
= 1, so ω2 =

σφ(E/Q2) ·(ε(p+q),−pq)Q2 . To calculate (ε(p+q),−pq)Q2 , we consider the equation

ε(p + q)x2 − pqy2 = 1. Let f(x, y) = ε(p + q)x2 − pqy2 − 1, then ∂f
∂y
(x, y) = −2pqy,

and it is easy to see that ord2(f(1, 1)) ≥ 3 > 2 ·ord2(
∂f
∂y
(1, 1)). So by Hensel’s lemma
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(see [Sil1, p.322]), f(x, y) has a root in Q2 × Q2, and so (ε(p + q),−pq)Q2 = 1 (see

[Weib, Examp.6.2.2, p.253]). Therefore,

ω2 = σφ(E/Q2) = (−1)1+ord2♯cokerφ2 .

To calculate the integer ♯cokerφ2 = ♯(E ′(Q2)/φ2(E(Q2))), we use Lemma 3.8 of [Sc,

pp.91, 92]. For this, let

z = −x

y
, and z′ = −x+ ε(p+ q) + pqx−1

y − pqyx−2
= − y

x2 − pq
.

From the Chapter IV of [Sil1], one has x = z
w(z)

and y = − 1
w(z)

, where w(z) =

z3(1 + ε(p+ q)z2 + · · · ). So

z′ =
w(z)

z2 − pqw(z)2
=

z3(1 + ε(p+ q)z2 + · · · )
z2 − pqz6(1 + ε(p+ q)z2 + · · · )2

= z(1 + ε(p+ q)z2 + · · · ) · (1 + pqz4(1 + ε(p+ q)z2 + · · · )2 + · · · )

= z + (terms of higher degree),

i.e., the leading coefficient of z′ is 1. So | φ′
2(0) |−1

2 = 1 (see [Sc, p.92]), and so by

Lemma 3.8 of [Sc, p.91], we get

♯cokerφ2 =
| φ′

2(0) |−1
2 ·♯E(Q2)[φ2] · c2(E ′)

c2(E)
=

♯E(Q2)[φ2] · c2(E ′)

c2(E)
,

where c2(E) and c2(E
′) are the Tamagawa numbers of E and E ′ at 2, respectively,

and E(Q2)[φ2] = kerφ2 = {O, (0, 0)}. So by Lemma 2.1 and Lemma 5.2 above, we

get ♯cokerφ2 = 2 or 4, that is,

♯cokerφ2 = 2 if one of the following three hypotheses holds:

(a) p ≡ 3(mod8); (b) ε = 1 and p ≡ 1(mod8); (c) ε = −1 and p ≡ 5(mod8).

♯cokerφ2 = 4 if one of the following three hypotheses holds:

(a′) p ≡ 7(mod8); (b′) ε = 1 and p ≡ 5(mod8); (c′) ε = −1 and p ≡ 1(mod8).

From this the value of σφ(E/Q2) and hence ω2 is obtained. The proof is completed.

□

On the parity conjecture of some special E/Q in (1.1) above, we have

Corollary 5.4. Let E/Q be the elliptic curve in (1.1) above. If one of the

following three hypotheses holds:

(1) ε = 1 and p ≡ 5 (mod 8);
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(2) ε = −1 and p ≡ 3, 5 (mod 8);

(3) ε = 1, p ≡ 3 (mod 8) and q = a21 + a22 with (a1 + ε1)
2 +(a2 + ε2)

2 = a23 for some

rational integers a1, a2, a3 ∈ Z and some ε1, ε2 ∈ {1,−1}.
Then the parity conjecture is true for E/Q, i.e., ωE = (−1)rankE(Q).

Proof. For the cases (1) and (2), by Theorems 1 and 2 of [QZ1], we have

rankE(Q) = 0, and for the case (3), by Theorem 3 of [QZ1], we have rankE(Q) = 1.

Then the conclusion follows from Theorem 5.3 above. □

Remark. As pointed out by an anonymous referee, the result of these special

E/Q in Cor.5.4 above also follows by Monsky’s theorem on the 2-parity conjecture,

because their ⨿⨿ (E/Q)[2] have been shown to be trivial in [QZ1, Theorems 1,2].

Theorem 5.5. Let E/Q be the elliptic curve in (1.1) and let K = Q(
√
µD)

be the quadratic number field with D in (1.2) and µ = ±1. We assume that D ≡
µ (mod 4). Let L(E/Q, s) = Σ∞

n=1a1(n)n
−s be the L−function as above. Let EµD/Q

be the quadratic (µD)−twist of E/Q, and χK be the quadratic Dirichlet character

associated to K.

(1) Assume one of the following two hypotheses holds:

(a) ε = 1 and p ≡ 5, 7 (mod 8);

(b) ε = −1 and p ≡ 3, 5 (mod 8).

Then L(E/Q, 1) = 2Σ∞
n=1

a1(n)
n

e−nπ/2
√
2pq.

further, for all integer r ≥ 0,

L(r)(E/Q, 1) = 2πΣ∞
n=1a1(n)

∫ ∞

1/4
√
2pq

[logr t+ (−1)r logr(25pqt)]e−2nπtdt. also,

L(EµD/Q, 1) = (1 + χK(−2pq)) · Σ∞
n=1

a1(n)

n
χK(n) · e−nπ/2D

√
2pq,

In particular, if χK(−2pq) = −1, then L(EµD/Q, 1) = 0.

(2) Assume one of the following two hypotheses holds:

(a′) ε = 1 and p ≡ 1, 3 (mod 8);

(b′) ε = −1 and p ≡ 1, 7 (mod 8).

Then L(E/Q, 1) = 0,
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further, for all integer r ≥ 0,

L(r)(E/Q, 1) = 2πΣ∞
n=1a1(n)

∫ ∞

1/4
√
2pq

[logr t+ (−1)r+1 logr(25pqt)]e−2nπtdt. also,

L(EµD/Q, 1) = (1− χK(−2pq)) · Σ∞
n=1

a1(n)

n
χK(n) · e−nπ/2D

√
2pq.

In particular, if χK(−2pq) = 1, then L(EµD/Q, 1) = 0.

Proof. Since E/Q is modular (see [TW],[Wi],[BCDT]), the function fE(z) =∑∞
n=1 a1(n)e

2πinz satisfies the Hecke equation fE(z) = −ωEN
−1z−2f(− 1

Nz
), and

the differential fE(z)dz is invariant under the usual modular group Γ0(N), where

N = 25pq is the conductor, and ωE is the root number of E/Q. Also by assump-

tion, the discriminant d(K) = µD satisfying (d(K), 2NE) = 1. So L(EµD/Q, 1) =

L(E/Q, χK , 1). Hence by Theorem 9.3 of [M, P.61], we have

L(E/Q, 1) = (1 + ωE)Σ
∞
n=1

a1(n)

n
e−2nπ/

√
N ,

L(r)(E/Q, 1) = 2πΣ∞
n=1a1(n)

∫ ∞

1/
√
N

[logr t+ ωE(−1)r logr(Nt)]e−2nπtdt,

L(EµD/Q, 1) = Σ∞
n=1

a1(n)

n
[χK(n) + χK(n) ·

g(χK)

g(χK)
· χK(−n) · ωE]e

−2nπ/
√
Nd(K),

where g(χK) =
∑

b mod d(K) χK(b)e
2πib/d(K) is the Gaussian sum. Note that χK(n) =

0,±1 (∀n ∈ Z), so χK = χK , and g(χK) = g(χK). Then by our results about the

root numbers in Lemma 5.1 and Theorem 5.3 above, the conclusion follows. □

Example 5.6. For the elliptic curves E : y2 = x(x + 3ε)(x + 5ε) and the

field K = Q(
√
−119), the conductor NE = 25 · 3 · 5 = 480 and the discriminant

d(K) = −119. By Theorem 5.3 above, the root number of E/Q is ωE = −ε. So

for the L−function L(E/Q, s), we have L(E/Q, 1) = 0 in the case ε = 1. And in

this case, the Mordell-Weil group E(Q) ∼= Z × Z/2Z × Z/2Z. For the other case

ε = −1, E(Q) ∼= Z/2Z × Z/2Z (see [QZ1, p.1373]), and by Theorem.5.5 above,

L(E/Q, 1) = 2Σ∞
n=1

a1(n)
n

e−nπ/2
√
30. Moreover, d(K) = −119 ≡ 612 (mod 4NE). So

the Heegner hypothesis holds for E and K, and then there is a Heegner point PK ∈
E(K) such that σ(2PK) = −2ωEPK (see [Kol3,4]) because E(Q)tors ∼= Z/2Z×Z/2Z,
where σ is the generator of the Galois group Gal(K/Q). Since ωE = −ε, we have

σ(2PK) = 2εPK . Now for any prime number l > 37, the Galois representation ρl is

irreducible (see [Cha, p.175]). Also every such prime number l satisfies l ∤ d(K), l2 ∤
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NE, so by Cha’s theorem in [Cha], we have ordl♯⨿⨿(E/K) ≤ 2 ·ordl([E(K) : ZPK ]).

□

Remark

I thank the anonymous expert for pointing out that the result of Corollary 5.4

above also follows by Monsky’s theorem on the 2-parity conjecture. Some further

application toward verifying the BSD for a family of elliptic curves will be discussed

in a separate paper.
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