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Abstract

Let E be an elliptic curve defined over a number field, the conjecture of
Birch and Swinnerton-Dyer (BSD, for short) asserts a deep relation between
the group E(K) of rational points and the L—function L(E/K,s) of E at
s = 1. Very few explicit results about E(K) and L(1) are known, even no
general method is known to determine L(1) vanishing or not for a given elliptic
curve. In this paper, we study some quantities related to BSD of a special
class of elliptic curves, more precisely, we study the arithmetic of quadratic
twists of elliptic curves y? = z(z+¢ep)(z+eq) and their L—function. Based on
some classical works, especially those of Greenberg, Kramer-Tunnell, Kato-
Rohrlich, Manin and Mazur, under some conditions, we obtain results about
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the vanishing of the value at s = 1 of the L-function, and explicitly determine
the following quantities: the norm index 6(FE,Q, K), the root numbers, the
set of anomalous prime numbers, a few prime numbers at which the image
of Galois representation are surjective. We also study the relation between
the ranks of the Mordell-Weil groups, Selmer groups and Shafarevich-Tate
groups, and the structure about the [*°—Selmer groups and the Mordell-Weil
groups over Z;—extension via Iwasawa theory. These results provide some
useful evidence toward verifying the BSD for a family of elliptic curves.

Keywords: Elliptic curve, L—function, quadratic twist, Selmer
group, Shafarevich-Tate group, root number, local norm index, Iwasawa
theory, BSD conjecture
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1 Introduction

Let E be an elliptic curve over a number field K, and L(E/K, s) be the L—function
of E over K. By Mordell-Weil theorem (see, e.g. [Sill]), the set E(K) of K —rational

points of E is a finitely generated abelian group. Hence
E(K) ~ 7" @E(K)torsa

where r = rank(E(K)) > 0 is the rank of E over K, and F(K )is is the torsion
subgroup of E(K).

Conjecture 1.1 (see [Sill]). The L—function L(E/K,s) of E over K has an
analytic continuation to the entire complex plane, and satisfies a functional equation
relating the values at s and 2 — s.

This conjecture was proved when K = Q (see [BCDT], [TW], [Wi]).
The conjecture of Birch and Swinnerton-Dyer (BSD, for short) for elliptic curves

states that

Conjecture 1.2 (Birch and Swinnerton-Dyer conjecture, see [Sill]).

(1) The rank of E(K) equals the order of vanishing of L(E/K,s) at s = 1.
(2)

o LE/K s) A THE/K) - RIE/K) - [Ty eo(B)
sl (s—=1)r 1E(K)3 ’

tors

where r = rankE(K),) = the real period, F(K )iy is the torsion subgroup of
E(K), R(E/K) is the regulator of E(K)/E(K )i, N is the conductor of E/K, ¢,(E)



[E(K,) : Eyo(K,)] is the Tamagawa number of E at the place v, III (E/K) is the

Shafarevich-Tate group of E over K, which is conjectured to be a finite group.

In the literature, much important progress has been made about the BSD conjec-
ture. For example, for elliptic curves over the rational number field Q, let r,,(F/Q)
denote the order of vanishing of L(E/Q, s) at s = 1. Then one current state of the

BSD conjecture is expressed by the result:

Theorem 1.3 (Gross-Zagier, Kolyvagin, etc., see [Kol3]). The equality rank F(Q)
ran(E/Q) holds and § III(E/Q) is finite if r,,(E/Q) < 1.
Yet, at present, to explicitly determine the arithmetic quantities such as E(K) and
the order of L(E/K,s) at s = 1 are generally not easy, even for the question about
determining whether the value L(E/K, 1) vanishing or not.
In this paper, we will study explicitly L(1) and some related arithmetic quantities
about twists of a family of elliptic curves E over the rational number field Q, from
which, for example, we obtain that L(E;/Q, 1) = 0 for many quadratic twists Fy of

E. More precisely, we consider the elliptic curves
E=E: ¢y =z(x+ep)(r+eq), (¢==£1), (1.1)
and their quadratic D—twist
Ep =F5: y* =x(x +epD)(x + eqD), (1.2)

where p and ¢ are odd prime numbers with ¢—p =2, and D = D; --- D,, is a square-
free integer with distinct odd prime numbers Dy, --- | D, satisfying (pg, D) = 1.
When D = 1,E; = E, and for € = 1 (resp. —1), we sometimes write £ = E7
(resp. E7). By Tate’s algorithm (see [Tal, [Sil2]), the discriminant, j—invariant and

conductor of Ep/Q are obtained as follows, respectively

64(p* + 2q)?

A = 64p*g*D°, j = 7
P%q

) NED = 25qu2 (13)

So the equation (1.2) above is a global minimal Weierstrass equation for Ep over the
rational number field Q. Moreover, Fp/Q has additive reduction at 2, Dy, --- , D,,
has multiplicative reduction at p, ¢, and has good reduction at other finite places.

In the following, we study the arithmetic of these elliptic curves. The following

quantities are explicitly determined: the norm index §(F,Q, K) (see Theorem 3.3),
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the root numbers (see Theorem 5.3), the set of anomalous prime numbers (see
Proposition 2.4), a few prime numbers at which the image of Galois representation
are surjective (see Proposition 2.7). The relation between the ranks of the Mordell-
Weil groups, Selmer groups and Shafarevich-Tate groups, and the structure about
the [*°—Selmer groups and the Mordell-Weil groups over Z;—extension via Iwasawa
theory are studied (see Propositions 3.1, 4.1, 4.2, and Theorems 3.4, 3.7, 3.8, 4.3,

4.4). On L(1), one of our main result is as follows

Theorem 1.4 (see Theorem 5.5 below) Let E' = E*° be the elliptic curve in (1.1)
and let K = Q(y/uD) be the quadratic number field with D in (1.2) and p = +1. We
assume that D = p (mod 4). Let L(E/Q, s) = X9°,a,(n)n* be the L—function as
above. Let E,p/Q be the quadratic (uD)—twist of E/Q, and xx be the quadratic
Dirichlet character associated to K.

(1) Assume one of the following two hypotheses holds:
(a) e=1and p=5,7 (mod 8);

(b) e=—1and p=3,5 (mod 8).

Then L(E/Q, 1) = 2550, ) e=nm/2v20a,

further, for all integer r» > 0,

LY(E/Q,1) =275 a4 (n)/ [log"t + (—1)"log" (2°pqt)]e”2"""dt. also,
/4y

L(Eup/Q,1) = (1 + xx(~2pq)) ZzozlalflmXK(n) . e*’”r/w\/%,

In particular, if xx(—2pg) = —1, then L(E,p/Q,1) = 0.
(2) Assume one of the following two hypotheses holds:
(') e=1and p=1,3 (mod 8);

(b’) e=—1and p=1,7 (mod 8).

Then L(E/Q,1) =0,

further, for all integer r» > 0,

LU(E/Q,1) = 275 a1(n) / [log" t + (—1)"" log" (2°pqt)]e *"™dt. also,
1/4v/%p4

L(Eup/Q,1) = (1 = xx(—2pq)) - E;’f’:lal(n)

. 6—n7r/2D\/2pq

Xk (n)

In particular, if xx(—2pq) = 1, then L(E,p/Q,1) = 0.

(For some concrete example on L(1), see Example 5.6 below).



These results, together with some former results about Mordell-Weil groups and
Selmer groups as in [QZ1] and [LQ)], provide some useful evidence toward verifying

the BSD for a family of elliptic curves, which we will discuss in a separate paper.

Organisation of the paper. Section 2 includes some basic facts on reduction from
Tate’s algorithm, and some results on anomalous prime, ramification and Galois rep-
resentation deduced from the works of Mazur, Bahargava-Skinner-Zhang and Serre.
In Section 3, by using Kramer’s method and Kramer-Tunnell’ formula, and the for-
mer results in [Q1], [QZ1], we compute the norm index, Tamagawa number, Selmer
group, rank, and some congruences between rank and Shafarevich-Tate group. In
Section 4, following mainly the works of Mazur, Greenberg and Kato-Rohrlich, we
study the structure about the (*°—Selmer groups and the Mordell-Weil groups over
Z,—extension via Iwasawa theory. Finally, in Section 5, by results of Rohrlich, we
compute the root numbers, and by using a formula of Manin on L(1), we obtain

some results on the vanishing of the value at s = 1 of the L-function.

2 Reduction, ramification and Galois representa-
tion

In the following, unless otherwise stated, every conclusion for the elliptic curves Ep
in (1.2) also holds for F; = E in (1.1) when take D = 1. For a prime number [ and

an integer m, (7) is the usual Legendre quadratic residue symbol.

Lemma 2.1 Let Ep/Q be the elliptic curve in (1.2) above.
(1) At each prime [ | Ng,, the Kodaira type is as follows:
Il for 1l =2; I forl =por q; and [} for | = Dy, -+, D,, respectively.
The Tamagawa number ¢; is as follows:
q=2forl=2,p,q;and ¢, =4 forl = D,---,D,.
(2) Ep has split multiplicative reduction at p if and only if ( %) =1
(3) Ep has split multiplicative reduction at ¢ if and only if (%) =1.
(4) Let [ be a prime number such that [ { 22qu. Then Ep has good supersingular
reduction at [ if and only if S~/ (l_gl) pig T ™ =0 (mod 1).
(5) The torsion subgroup Ep(Q)ios = Z/27 x Z/2Z, and for D = 1, we have
E(F)tos = Z)2Z x ZJ2Z for any quadratic number field F.



(6) Assume 31 pgD. Let F' be a number field, and let p be a prime ideal of F' lying
over 3, let e = e(p/3) and f = f(p/3) be the ramification index and residue degree,
respectively. Then we have

(62) if e(p/3) = F(p/3) = 1, then Ep(F)iow = Z/2Z x 7.)2Z;

(6b) if f(p/3) = 1 and Ep has additive reduction at some finite places of F' lying
over 2, then Ep(F)ors = Z/27 X Z./27 or 7.)27. X 7] 6Z;

(6c) if f(p/3) =1, then Ep(F)iors/Ep(F)[3%] = Z/27Z x 7/27Z, where Ep(F)[3%]
denotes the 3—primary component of Ep(F)iors;

(6d) If Ep has an additive reduction at some finite places of F' lying over 2, then
BED(F )tors = 2™ or 2™ - 3 for some m € Z>y.

Proof. (1) is a consequence of direct calculation by the Algorithm of [Tal; (2),
(3) and (4) are easily obtained (see [Sill] for the methods); (5) follows from Lemma
2 and Lemma 4 of [QZ2]; (6) is similar to the Prop.1 in [QZ1, p.1374]. O
Particularly, by (2) and (3) of Lemma 2.1, one can easily see that, £ has split
multiplicative reduction at both p and ¢ if p = 1,7 (mod 8), and has non-split
multiplicative reduction at both p and ¢ if p = 3,5 (mod 8); Also, £~ has split
multiplicative reduction at p and non-split multiplicative reduction at ¢ if p =
1,3 (mod 8), and has non-split multiplicative reduction at p and split multiplicative

reduction at ¢ if p = 5,7 (mod 8).

Corollary 2.2. For the elliptic curves Ep/Q in (1.2) above,
1) Ep has good supersingular reduction at 3 if 3 t pgD;
3
4

(1)

(2) Ep has good ordinary reduction at 5 if 51 pgD;

(3) Ep has good ordinary reduction at 7 if 71 pgD and p = 1,4 (mod 7);
(4)

Ep has good supersingular reduction at 7 if 71 pgD and p = 2,3,6 (mod 7).
Proof. Follows easily from the above Lemma 2.1(4). O

For an elliptic curve F/Q and a prime number [, we denote the reduction of £
at [ by El, and let ¢ =1+ 1 — ﬁﬁl(lﬁ'l), where F; is the field with [ elements. For
a positive integer m, E[m] = {P € E(Q) : mP = 0} is the group of m—division
points of E, where Q is an algebraic closure of Q. Let Gg = Gal(Q/Q) be the
absolute Galois group, and let p; : Gg — Gla(IF;) be the Galois representation of
G given by the action of Gg on the [—division points of E (see, e.g., [Sill, p.90]).

By the open image theorem of Serre ([Sel]), p; is surjective for all but finitely many



prime numbers /.

Lemma 2.3. For the elliptic curves Ep/Q in (1.2) above,
(1) if 34 pgD, then tEp ,(F3) = 4 and ag = 0.
(2) if 7tpgD, and p = 2,3,6 (mod 7), then ﬂE\[;7(IE‘7) =8 and a; = 0.
(3)
(3a) if p=1,2 (mod 5), then

assume 5 1 pgD,

— 4 ifD=1,4 (mod 5 2 it D
ﬁED@(FE)):{s ifD52,3gmod5g, and%:{ 2 |

(3b) if p=4 (mod 5), then

= ) 8 if D=1,4 (mod 5) —2 if D=1,4 (mod 5)
1Ep,5(Fs) = { 4 if D=2,3 (mod 5), and a5 = { 2 if D=2,3 (mod 5)
(4) assume 71 pgD,
. e=1 e=—1
(42) lf{ p=1(mod7) °F { p=4 (mod7), then
— _J 12 if D=1,2,4 (mod 7) ] =4 ifD=1,2,4 (mod 7)
tEp,;(Fr) = { 4 ifD=3506(mod7), andar= { 4 ifD=356 (mod 7),
. e=1 e=-—1
(4b) if { p=4(mod7) ' { p=1 (mod 7), then
= _J 4 iftD=1,2,4 (mod 7) _J 4 ifD=1,2,4 (mod 7)
tEp,;(Fr) = { 12 if D =3,5,6 (mod 7), 2ndar= { —4 if D =356 (mod 7)

(5) #Ep,(F2) =3, tEp  (Fp)=Di+1(i=1,--n),

o pf(ER) =1 — g if (ZR)=1
tEp,,(Fp) = { P2 if (iTD) _ and $Ep, (F,) = { g+2 if (—qQTaD) = —1.

Proof. Via direct calculation. [

Recall that a prime number [ is said to be anomalous for an elliptic curve E/Q if
E has good reduction at [ and 1£,(F,) = 0 (mod [) (see [Ma2, p.186] and [M, p.25]).
We denote Anom(E/Q) = {l: [ is an anomalous prime number for £/Q}.

Proposition 2.4. For the elliptic curves Fp/Q in (1.2) above, we have Anom(Fp/Q) =

Proof. Since the conductor Ng,, = 2°pgD?, we have 2,p,q, D; ¢ Anom(FEp/Q) (i =
1,--+,n). On the other hand, by Lemma 2.1(5) above, Ep(Q)tors = Z/27 x 7./27,
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so by the results 2.10(b) of [M, p.26] we have Anom(Ep/Q) C {2,3,5}, and so
Anom(Ep/Q) C {3,5}. For I = 3 or 5, we may assume that [ { pgD, then by Lemma
2.3(1) and (3) above, we have ﬁE;?)(IFg) = 4 and ﬂE,;S(I%) = 4 or 8, which shows
that 3,5 ¢ Anom(Ep/Q), so Anom(Ep/Q) =0. O

For our next discussion, we need the following

Lemma 2.5 (see [BSZ, p.4] and [Sil2, Prop.6.1 and exer.V.5.13]). Let E be an
elliptic curve over Q with conductor Ng. Let [,1I’ be two prime numbers with [ # ['.
Suppose [ | Ng. Then E[l'] is ramified at [ if and only if I ¥ ord;(4;) for a minimal

discriminant A; of E at [.

Proposition 2.6. For the elliptic curves Ep/Q in (1.2) above , let [ be a prime
number. Then
(1) Ep[l] is ramified at p if and only if [ > 2 and [ # p;
(2) Ep[l] is ramified at ¢ if and only if [ > 2 and [ # ¢.
In particular, Ep[p] is ramified at ¢, and Eplg| is ramified at p.

Proof. Since the equation in (1.2) above is global minimal for Ep/Q, we have

A= A = 64p?q>D® for any prime number [, so

0 ifl42pgD
ordl(Al) = 6 ifl ‘ 2D
2 ifl=porgq.

On the other hand, the conductor Ng, = 2°pgD?, so a prime number [ | Ng, <
[ = p or ¢q. By the above discussion, ord,(A,) = ord,(A,) = 2, so the conclusion

follow from the above Lemma 2.5. O

Proposition 2.7. For the elliptic curves Ep/Q in (1.2) above, let [ be a prime
number, and p; be the corresponding Galois representation.
(1) If 31 pgD, then ps is surjective, i.e., p3(Gq) = Glao(F3).
(2) If 71pgD and p = 2,3,6 (mod 7), then pr is surjective, i.e., p7(Gg) = Gla(Fr).
(3) If 31 pgD, l1pgD and [ > 3105, then p; is surjective, i.e., p(Gg) = Glo(F)).
Proof. (1) Under the assumption, by Cor.2.2(1) above, Ep has good supersin-
gular reduction at 3; also, the discriminant A = (2D)%(pq)? is obviously not a cube,
so the conclusion follows from Serre’s theorem (see [Sel] or [PR, Prop.4.4]).

(2) Under the assumption, by Cor.2.2(4) above, Ep has good supersingular reduc-

64(p*+2q)3

tion at 7; also, since the conductor Ny, = 2°pgD? and the invariant j = e

8



we have p || N and ord,(j) = —2 # 0 (mod 7). So the conclusion follows from Serre’s
theorem (see [Sel] or [PR, Prop.4.4]).

(2) Under the assumption, 3 is the smallest (odd) prime number at which Ep has
good reduction. Also, j ¢ Z and ord,(j) = —2 < 0. Moreover, the prime number
I under our assumption obviously satisfies I > (v/3 + 1)%. So the conclusion follows

from Prop.24 of [Sel]. O

3 Rank, norm index, Shafarevich-Tate group and
[—Selmer group

Let E/Q be the elliptic curve in (1.1) above, and let K = Q(v/D) be the quadratic
number field, where D = D, --- D,, with distinct odd prime numbers Dy, --- , D,, as
in (1.2) above. Let My be a complete set of places on K, and Mg (resp. M) its
subset of infinite (resp. finite) places. Let S = M U{v € MY : v | 2pq}. The
group of Sk —units of K is denoted by Uk g, the ideal class group of K is denoted
by CI(K), and the Sx—class group of K is denoted by Clg(K), precisely, Clg(K) is
the quotient of CI(K') by the subgroup generated by the classes represented by the
finite primes in Sk (see [Sa, p.127]). For an abelian group A and a positive integer
m, we write Ajm] = {a € A: ma = 0}. For a vector space V' over Fy, we denote its
dimension by dim,V. For a finitely generated abelian group A, we denote its rank
by rank(A). The next result is about E(K), the group of rational points of F over
K.

Proposition 3.1. Let E/Q be the elliptic curve in (1.1), and K = Q(v/D) be
the quadratic number field as above, we have rank(F(K)) < 14 + 2dim,Clg(K)[2].

Proof. Let E': y* = 2° — 2e(p + q)x* + 4x. There is an isogeny ¢ of degree 2
between E and E’ with the dual isogeny ¢ as in [QZ1, pp.1372,1373]. Let Sel,(E/K)
and Sels(E’/K) be the p—Selmer group of £/K and the g—Selmer group of E'/K,
respectively, and III (E/K) (resp. I (E'/K) be the Shafarevich-Tate groups of
E/K (resp. E'/K) (see [Sill, Chapt.10]). Then (see [Sill, pp298, 301])

dims B(K)2(K) + dims B/ (K3 (B(K) )
= dimySel, (E/K) — dimy IHI(E/K)[¢] + dimsSels(E'/K) — dimy HI(E'/K)[7)].



Note that E'(K)[p] = {0,(0,0)}, ¢(F(K)[2]) = {0,(0,0)}, so rank(E(K)) <

dimsSel,(£/K) + dimySels(E'/K) — 2. On the other hand, the following exact se-

quence is known (see, e.g., [St, p.5], [Sz, p.55]): 0 = Uk,s/Uf g — K(Sk,2) —

Clg(K)[2] = 0, where, K(Sk,2) = {bK* € K*/K** : ord,(b) = 0 (mod 2) for all v ¢
Sk }. So by the Dirichlet unit theorem (see [L, pp.104, 105]), we have dimy K (Sk, 2) =

1Sk + dimyClg(K)[2] < 8 + dimyClg(K)[2] because 1Sk = §MF + #{v € My : v |

2pq} <246 = 8. Also, fSel,(E/K) < K (Sk,2) and §Sel5(E'/K) < $K(Sk,2) (see

[Sill, p.302]), so from the above discussion, rank(E(K)) < 2dimeK (Sk,2) —2 <

14 + 2dim,Clg(K)[2]. O

Next, we need state some notations. Let F' be a number field and L be a
quadratic extension of F, we write Mp (resp.M}) for a complete set of places on F'
(resp.L). Fix a place w € My, lying above v for each v € Mp. Denote the Galois
group Gal(L,/F,) by G, where F, and L,, are the completions of F' at v and L
at w, respectively. Let E be an elliptic curve over F. For every v € Mg, we denote
0y = logy(E(F,) : N(E(Ly))), this is the local norm index studied deeply in [Kr] and
[KT]. For some of their arithmetic application (see,e.g., [MR], [Q1]). Let §(E, F, L)
be the sum of all the local norm index, i.e., §(E, F,L) = ZUGMF d,. Now, for the
elliptic curve E/Q in (1.1) and the quadratic number field K = Q(v/D) as above, we
come to calculate explicitly the quantity §(E,Q, K) as in [Q1, p.5054, and Section

3 there], and give some application.

Lemma 3.2. Let E/Q be the elliptic curve in (1.1), u = 1, and K = Q(y/uD)
be the quadratic number field with square-free integer D = D;---D,, as in (1.2)
above. Fix a place w € Mg lying above 2. Let A,,c, and f, be the minimal
discriminant, Tamagawa number and the exponent of the conductor of F at w (i.e.,
over K, )(see [Sill]), respectively.
(1) If D =5pu(mods), then K,, = Qy(+v/=3), and
Type I11, ord,(A,) =6, f, =5, and ¢, = 2.
(2) If D = 7u(mods), then K, = Qy(v/—1), and
Type I3, ord,(A,) =12, f, =6, and ¢, = { i gz i égﬁgiig
(3) If D = 3u(mod8), then K, = Q,(1/3), and

(

Type [57 Ordw Aw) = 127 fw = 6, and Cow = { 4 lfp = 1<m0d4>

2 if p = 3(mod4).
Proof. For the case uD = 3,5, 7(mod8), from the proof of Lemma3.1 in [Q1,
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p.5057], we have K, = Qq(v/—3) <= uD =5 (mod 8); K, = Qu(v/—1) <
pD =7 (mod 8); K, = Qa(v/3) <= puD =3 (mod 8). Then the conclusion follows
from Tate’s algorithm (see [Ta], [Sil2]), in a way as done in the proof of Lemma3.1
of [Q1, p.5057]. O

Theorem 3.3. Let E/Q be the elliptic curve in (1.1), p = £1, and K =
Q(v/uD) be the quadratic number field with square-free integer D = Dy - -+ D,, as in
(1.2) above. Denote pg = (1—pu)/2. Then we have 2n+po < 6(E,Q, K) < 2n+4+ pp.
More precisely,

(1) §(F,Q, K) =2n + g if and only if D = p(mod8) and (’%) = (’%) =1
(2) 0(E,Q,K) = 2n+ 1+ po if and only if one of the following four hypotheses

holds :

3) 6(E,Q, K) = 2n+2+ py if and only if one of the following six hypotheses holds:
mod4) and (%) = (%) =1

_ Dy _ (uDy _ 1.
= 3(mod4) and (£7) = (57) = 1L;
o

[0V
o
~—
S
|
BN
=
=
o
Q.
X

B
Il
—_
—~ O

3¢) D =5p(mod8) and (£2) + (47) = 0;
3d) D = 7p(mod8), p = 3(mod4) and (TD) + (%) = 0;
3e) D = 3u(mod8), p = 1(mod4) and (%) + (%) =0;
3f) D = p(mod8) an (’%) = ("f) =-1

(5a) D = Tu(mod8), p = 1(mod4) and (%) = (%) =—1;

11



(5b) D = 3pu(mod8), p = 3(mod4) and (”TD) = (£B) = —1.

q
Proof. We consider the case p = 1, the other case is similar. Let S be

the set of finite places of Q obtained by collecting together all places that ramify

in K/Q and all places of bad reduction for £/Q, so S = {2,p,q,D;---D,}. Al-

though the cases here become more complicated, we will take our calculation in a

way as in the Lemma 3.2 of [Q1, p.5058], so we need to use the same notations

S50, Sg, Sgus Sars Say Ssmrs Snsmrs Snsmrs Onsmre 8 i1 the Remark of [Q1, pp.5055,5056].

For the convenience of the reader, we write them in the present case as:

So ={v € S: visramified or inertial in K };

Sy ={v € Sp: v{2and E has good reduction at v} = {Dy,---, D,};

Squ={v € Sp :v |2, E has good reduction at v and Q, is unramified over Q9}

-y

Sar = {v € Sp : E has additive reduction at v} = { 52} if D= 3,5, 7(mods8)

if D = 1(mod8);

Sa = Sar U{v € Sy : v | 2, E has good reduction at v and Q, is ramified over Qy}
= Sar;

Ssmr = {v € Sp : E has split multiplicative reduction at v} C {p, ¢} N Sp;

Spsmr = {v € Sp : E has non-split multiplicative reduction at v}

=S e LUSI . (the disjoint union) C {p,q} NSy, where

S e = 1V € Spsmes v is inertial in K} = S, gm0,

Sl e = {0 € Spsmr ¢ v is ramified in K} = ().

Obviously, Sy = Sy U Sgu U Se U Semr U Spsmyr (the disjoint union).

By definition, §(E,Q, K) = }_,cyp, 0o, where 6, = logy(E(Qu) : N(E(Ky))) is
the local norm index. Furthermore, by the results in [Kr|, one can obtain that
(E,Q,K) = 6o + df, where do is as in [Q, p.5054], and 0y = &, + 0., + 0, with

g, Om, 0q In [Q1, pp.5055,5056], that is,

1
5a = Z 511; 5m = 5sm7" + 5nsmr with 5smr = 5 Z (1 + (Avy D)QU) and

vES, VESsmr

Onsmr = % P CERC R Y (% (14 (Ay, D)g,) - (—1)"43) 4 1> :

! "
Uesnsmr Uesnsmr

0g =Y dimy E,(k,)[2]+ Y e(v), where

vESy vESgu

% (1 — (—1)”(D)) - [@Q, : Qo] if E has good supersingular reduction at v,

e(v) =
13+ (Ay,D)g,) if E has good ordinary reduction at v.

12



Here E, is the reduction of E at v, k, is the residue field of Q,, and (,)g, is the
Hilbert symbol (see [Se 2, Chapt.XIV]).

It is easy to see here that d., = 0 since D > 0. So we only need to calculate dg, d,,,, I
For this, we divide our discussion into the following cases.

Case for d,. Since E has good reduction at each D;(i = 1,---,n), we have an
injective homomorphism E(Q)irs < Ep,(Fp,) (see [Kn, p.130]). So by Lemma
2.1(5) above, we have Ep, (Fp.)[2] 2 (Z/27)%. and so

Og = Yyes, dimy Ey(F)[2] = Y1, dimg Ep, (Fp,)[2] = 2, ie., § = 2n.

Case for d,,,. Since the equation (1.1) is global minimal for £//Q, we have ord,(A,) =
ord,(A,) = 2,50 1+ (=1)4A) = 2 for | = p or ¢, and 80 Gpemr = S nsmr- Also
(Ap, D)g, = (Ag,D)g, = 1 because A, = Ay = (8pq)*. SO Ogmy = §Ssmr. Hence

Om = 8Ssmr + BSnsmr = 8(So N {p, ¢}) < 2. The set Sy can be determined as follows.

{Dy,---,D,,p} if(2)=—1and (%) =1

{D1,--,Dn,q} if(7)=1and (%) =-1

(D1, Dn} i (D)= (F)=1

{Dy,--, Du,p,g} it (2)
{2,D1,--+,Dy,,p} if

{2,Dy,--- ,Dy,,q} if

If D = 1(mod8), then Sy =

If D =3,5,7(mod8), then Sy =

{2,Dy,---,D,} if (%) = (%) -1
{27D17 7Dn;p7q} if (%) = %):_1
From this, we get
0 if (2)=(2)=
_ by, (B _
Su=3 1 iR+ (2) =0
2 it (0) = (&) - 1.
2 q
Case for §,. Since S, = S, is given above, we have
00 = Zvesa Oy = { (6)2 i%fé) :E 1?%?(’)38[10(18) So the remainder is to compute the

local norm index d; when D = 3,5, 7(mod8). So we assume now D = 3,5, 7(mod8).

By the Theorem 7.6 in [KT, p.332] (see also [Q1, p.5054]),

o C2Cp 2 || AQADQd(Kw/QQ)i(‘) ”Q2 e
02 = log, A [l ’

w

By Lemma 2.1(1) above, we have ¢y = cpas = 2,Aps = 64p?¢>D®. Also, by the
. | D if D=5(mod8)

results in [Q1, p.5058], we have d(K,/Qq) = 4D if D = 3,7(mod8). From

these discussion together with the results of ¢, and A, in Lemma 3.2 above, one

can work out d, as follows.

If D = 5(mod8), then 0y = 1;

13



11 = T(mods). then 5, — { § 7= Jmod
110 = 3(mods), then 5, ~ { } Jf7 = Kol

Now our conclusion follows.  [J
Recall that IIT (£/K) is the Shafarevich-Tate group of E/K. We have the fol-
lowing explicit parity relation between rank(E(K)) and dim, HHI(E/K)[2].

Theorem 3.4. Let E/Q be the elliptic curve in (1.1), p = £1, and K =
Q(v/1D) be the quadratic number field with square-free integer D = Dy --- D,, as
in (1.2) above. Denote pg = (1 — p)/2. Then we have
(1) rank(FE(K)) = po+dim, (£ /K)[2] (mod2) if one of the following six hypotheses

Proof. By Theorem 1 of [Kr, p.130], we have
rank(E(K)) = ZveMQ dp+dim,I(E/K)[2] = 0(FE, Q, K)+dim,I(E/ K)[2] (mod?2).
So the conclusion follows from Theorem 3.3 above. [

Corollary 3.5. Let F/Q and K be as in Theorem 3.4 above. If § III(E/K)[2]

is a square integer, then under one of the conditions in (2) for 4 =1 (or in (1) for

p = —1) of Theorem 3.4, we have rank(E(K)) > 0.
Proof. Obvious. U
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Now for an elliptic curve E over a number field F, and a positive integer m, let

Sel,,(E/F) be the m—Selmer group of E/F (see [Sill, Chapt.10]).

Corollary 3.6. For the elliptic curves £/Q in (1.1) and Ep/Q in (1.2) above,
let v and pp be as in Theorem 3.4 above. Then we have
(1) dimsSela(E,p/Q) = po + dimySels(E/Q) (mod2) if one of the six hypotheses in
(1) of Theorem 3.4 above holds.
(2) dimsSels(Ep/Q) = po+ 1+ dimaSels(E/Q) (mod2) if one of the six hypotheses
in (2) of Theorem 3.4 above holds.

Proof. Let K = Q(v/pD) be as in Theorem 3.4 above. By Kramer’s theorem
(see [MR, Thm.2.7]), we have
dimySely(E,p/Q) = dimsSely(E/Q) +6(E, Q, K) (mod2). So the conclusion follows

from Theorem 3.3 above. [

For an elliptic curve E/Q, let L(E/Q, s) be its L— function (see [Sill]). We
denote its analytic rank by 74,(E/Q), i.e., re(F/Q) = ords—1 L(E/Q, s), which is
the order of L(E/Q, s) vanishing at s = 1.

Theorem 3.7. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in (1.1)
when take D = 1). Assume that one of the following four hypotheses holds:
(1) p > 37 and the p—Selmer group Sel,(Ep/Q) is trivial;
(2) p > 37 and the g—Selmer group Sel,(Ep/Q) is trivial;
(3) 51 pgD, Epl5]is an irreducible Gg—module, and the 5—Selmer group Sel; (Ep/Q)
is trivial;
(4) T1pgD, p=1,4 (modT7), Ep[7]is an irreducible Gg—module, and the 7—Selmer
group Sel;(Ep/Q) is trivial.
Then the rank and analytic rank of Ep/Q are both equal to 0, i.e., rank(Ep(Q)) =
ran(Ep/Q) = 0.

Proof. First, assume (1) (resp. (2)), then
a

E'p has multiplicative reduction at both p and g¢;

)
(b) Since Ep has no complex multiplication, by the work of [Mal] (or see[Cha,
p.175)), for p > 37, both Ep[p| and Eplq] are irreducible Gg—modules;

)

(c) By Prop.2.6 above, Ep[p] is ramified at ¢, and Eplg| is ramified at p;
(d) By assumption, Sel,(Ep/Q) (resp. Sel,(Ep/Q) ) is trivial.

So all the conditions (a), (b), (c¢), (d) in Theorem 5 of [BSZ, p.3] hold, and the
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conclusion follows.

Next, assume (3) (resp. (4)), then

(a) By Cor.2.2 above, Ep has good ordinary reduction at 5 (resp. 7);
(b) E
(c) By Prop.2.6 above, Ep[5] (resp. Ep|7]) is ramified at p;
(d) Sels(Ep/Q) (resp. Sel;(Ep/Q)) is trivial.

So all the conditions (a), (b), (c¢), (d) in Theorem 5 of [BSZ, p.3] hold, and the

conclusion follows. [

p[5] (resp. Ep[7]) is an irreducible Gg—module;

Theorem 3.8. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in (1.1)
when take D = 1). Assume that one of the following two hypotheses holds:
(1) 5t pgD, Ep|5]is an irreducible Gg—module, and the 5—Selmer group Sel;(Ep/Q)
has order 5;
(2) T1pgD, p=1,4 (modT7), Ep|[7]is an irreducible Gg—module, and the 7—Selmer
group Sel;(Ep/Q) has order 7.
Then the rank and analytic rank of Fp/Q are both equal to 1, i.e., rank(Ep(Q)) =
ran(Ep/Q) = 1.

Proof. Assume (1) (resp. (2)), then
(a) By Cor.2.2 above, Ep has good ordinary reduction at 5 (resp. 7);
(b) Epl5] (resp. Ep[7]) is an irreducible Gg—module;
(c) By Prop.2.6 above, Ep[5] (resp. Ep|7]) is ramified at [ for [ = p or g¢;
(d) The conductor N of Ep is obviously not square-free, and there are two distinct
prime factors [ || NV (i.e., p, q) such that Ep[5]) (resp. Ep[7])is ramified at [;
(e) Ep obviously has good reduction at 5 (resp. 7);
(f) Sels(Ep/Q) (resp. Sel;(Ep/Q)) has order 5 (resp. 7.)
So all the conditions (a), (b), (c), (d), (e), (f) in Theorem 9 of [BSZ, p.4] hold, and

the conclusion follows. [

Remark. For the elliptic curve Ep in Theorem 3.8 above, since its conductor
N = 25pgD? has two distinct prime factors of order one, i.e., p and ¢, by Theorem
1.5 of [Zh, p.8], we know that the following two statements are equivalent:
(1) rank(Ep(Q)) =1 and g III(Ep/Q) < +o0;
(2) 7an(Ep/Q) = 1.
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4 Iwasawa theory for FEp

Let E be an elliptic curve defined over a number field F, m be a positive integer
and [ be a prime number. Then for any place v € Mg, we have the Kummer
homomorphisms

Kom @ B(F,)®Z/mZ — H'(F,, Elm]), and k,;~ : E(F,)®Q,/Z; — H'(F,, E[I®]),
where Z; is the ring of [—adic integers and E[I*] is the [—primary torsion subgroup
of E. Recall that the m—Selmer group Sel,,(E/F) of E/F is defined as

Seln (E/F) = ker{H'(F, E[m]) — T, e, H' (Fy, E[m]) /Im(kom) },

and the [*°—Selmer group Selj (E/F) is defined as

Selj (E/F) = ker{H'(F, E[I*]) — [] H'(F,, E[1°])/Tm (i, )}

Note that the [*°—Selmer group can be defined for F over any algebraic extension

vEMp

M of Q (see [Gr, p.63]). There is a natural surjective homomorphism (see [Zh, p.3])
Sel,(E/F) — Selj= (E/F)[l],

and the properties of Selj~(E/F) can sometimes be deduced from the ones of
Sel;(E/F) (see [BS, p.6]).

Let Qo be a Z;—extension, i.e., it is a Galois extension of Q such that Gal(Q./Q) =
Zy, the additive group of [—adic integers. So we have Q. = U,>0Q,,, where for each
n,Q, is a cyclic extension of Q of degree [" and Q =Qy, Cc Q; Cc---CQ, C ---.
We write I' = Gal(Q4/Q), and let v € T" be a fixed topological generator. The
completed group ring A = Z[[I']] = Z,[[T]], where the indeterminate 7" is identi-
fied with v — 1. We write I', = Gal(Qs/Q,), then ', = I'"". For the structure
of the Iwasawa algebra A, see [Wa|. For an elliptic curve E defined over Q, the
Pontryagin dual of its [*°—Selmer group Selj~(E/Qs) is denoted by X(E/Qu) =
Hom(Selj=(E/Qo), Qi/Z;). 1t is a A—module via the natural action of I on the
group H'(Qq, E[I*°]), and one says that Sel;(E/Qy) is A—cotorsion if X (E/Qu)
is A—torsion (see [Gr, p.55]).

Now let Ep/Q be the elliptic curve in (1.2) above (E; = E'in (1.1) when take D =
1). Assume that the prime number [ satisfies one of the following two hypotheses:
(1) I =5 and 51 pgD;
(2) 1=17, TtpgD, and p = 1,4(mod7).
Then by Cor.2.2 above, Ep has good ordinary reduction at such [. So by Mazur’s
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control theorem (see [Gr, p.54]), the natural maps

Seli (Ep/Qy,) — Seli= (Ep/Quo)'™

have finite kernel and cokernel, of bounded order as n varies.

Such Ep/Q also has multiplicative reduction at p and ¢, so for the prime number [
such that [ = p, g or satisfies one of the above two hypotheses (1) and (2), by Kato-
Rohrlich’s theorem (see [Gr, p.55]), we know that Sel;~(Ep/Q) is A—cotorsion.

Furthermore, under this hypothesis, we have the following results.

Proposition 4.1. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in
(1.1) when take D = 1). Let [ be a prime number satisfying one of the following
two hypotheses:

(1) I =5 and 51 pgD;
(2) 1=17, TtpgD, and p = 1,4(mod7).
Then the map
Seli (En/Q) —s Selie (Ep/Qu )’
is surjective. If Sel;~(Ep/Q) = 0, then Sel;~(Ep/Qs) = 0 also.

Proof. By Cor.2.2 above, Fp has good ordinary reduction at such /; by Lemma
2.3 above, we have lfﬂﬁ;l(lﬁ); and by Lemma 2.1, [ t ¢y for any prime number /.
So the conditions (i), (ii), (iii) of Prop.3.8 in [Gr, p.80] hold (see also the Remark

there), and the conclusion follows. [

Proposition 4.2. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in
(1.1) when take D = 1). Let [ be a prime number satisfying one of the following
three hypotheses:

(1) l=porg;

(2) I=5and 51 pgD;

(3) {=7, T1pgD, and p = 1,4(mod7).

Then for all n > 0, the map Selj=(Ep/Q,) — Sel;~(Ep/Qs) is injective. More-
over,

coranky, (Selj (Ep/Qx)) = coranky, (Selj~(Ep/Q))(mod2).

Proof. Under our assumption, Ep has good ordinary or multiplicative reduction
at [. Also, by the above discussion, we know that Sel;~(Ep/Qy) is A—cotorsion, so

the conclusion follows from the Prop.3.9 and Prop.3.10 of [Gr, pp.81, 82]. O
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Now for the elliptic curves Fp/Q and the prime number [ as in the above
Proposition 4.2, by Mazur and Swinnerton-Dyer’s construction, there is an element
L(Ep/Q,T) € A®z Q, with some interpolation property, from which one can define
the [—adic L— function L;(Ep/Q,s). For the general theory of [—adic L—function
of elliptic curves, see [MSD] and [Gr]. By Weierstrass’ preparation theorem, we
have £(Ep/Q,T) = 1™ - U(T) - f(T), where f(T) is a distinguished polynomial,
U(T) is an invertible power series and m; € Z. As in [GV, pp.19, 20], we write
faal(T) = ™ . f(T). On the other hand, since Seli~(Ep/Qu) is A—cotorsion, i.e.,

X(Ep/Qw) is A—torsion, one has a pseudo-isomorphism
X(Ep/Qu) ~ (&1 A/ (f(T)™) © (&7 A/ (1)),

where f;(T") are irreducible distinguished polynomials in A, and a;,b; are non-
negative integers. Then the characteristic polynomial for the A—module X (Fp/Q)
is defined by fglﬁ (T) = 1" - T[=, £i(T)®, where my = 37" | b;. By Kato’s theorem
about the main conjecture (see [GV, p.21]), the polynomial f;lg (T) divides faa!(T)
in Q;[T]. Moreover, by Greenberg’s theorem (see |Gr, p.61]), the characteristic ideal
of X(Fp/Qs) is fixed by the involution ¢ of A induced by (o) = o~ ! for all o € T.

Theorem 4.3. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in (1.1)
when take D = 1). Let [ be a prime number satisfying one of the following three
hypotheses:

(1) I=porg

(2) I=5and 51pgD;

(3) 1=17, T+pgD, and p = 1, 4(mod7).

Then Selj~ (Fp/Q«) has no proper A—submodules of finite index. In particular, if
Selje (Ep/Qs) # 0, then Seljw (Fp/Q) is finite.

Moreover, for [ satisfying the hypothesis (2) or (3) here, if Sel;~(Ep/Q) is finite,
then f;E(O) ~ #Sel;« (Ep/Q). Here, for a,b € Q}, we write a ~ b to indicate that a
and b have the same [—adic valuation.

Proof. By Lemma 2.1(5) above, the torsion subgroup Ep(Q)os = Z/27 X
Z.)2Z, so for the prime number [ under our assumption, Ep(Q)ios[l*] = 0. Also,
by the above discussion, we know that Selj<(Fp/Qs) is A—cotorsion, so our first
conclusion follows from the Prop.4.14 of [Gr, p.102].

Next we come to show our second conclusion. As Seljx(Ep/Qs) is A—cotorsion,
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let falg( ) be its characteristic polynomial as above, i.e., glg (T) is a generator

of the characteristic ideal of the A—module X (Fp/Q), the Pontryagin dual of
Selj< (Ep/Qs). Denote 6, = " —1 = (1 +T)" —1 € A for each n > 0. We
know, X(Ep/Qs)/0.X(Ep/Qs) is the Pontryagin dual of Selj~(FEp/Qu)'", and
the torsion subgroup of X (Ep/Qu)/0, X (Ep/Qs) is then dual to
Seljss (Ep/Quo)t ™ /(Seljs (Ep/Quo ) ™ )aiv (see [Gr, p.82]),
In particular, X (Ep/Qs)/TX(Ep/Qs) is the Pontryagin dual of Selj(Ep/Qu ).
As assumed, Sel;~(Ep/Q) is finite, and so by the above discussion, Selj(FEp/Qu)"
is also finite, hence X(Ep/Qu)/TX(Ep/Qy) is finite. Therefore, T t alg( ), SO
falg( 0) # 0. In the following, For an element ¢ € Z,;, the highest power of [ dividing
¢ is denoted by ¢®.
Now we assume that [ satisfies the hypothesis (2), i.e., [ =5 and 5 { pgD. Then Ep
has good ordinary reduction at 5, and by Lemma 2.3 above, ﬁE’;S(F5) =4 or 8. So
/147\1;5(1&)[5"0} = 0. Also by Lemma 2.1, we have ¢y = 2 or 4 for any I’ | Ng,, the
conductor of Ep, and Ep(Q)ors = Z/27 X Z/27. So 0(5) = 1 for any I’ | N, and
Ep(Q)[5*] = 0. Hence by Theorem 4.1 of [Gr, p.85], we get

fig(©0) ~ (T ) (4B 5(F5)[5])? - #Sels= (Ep/Q)/ (Ep(Q)5])*

ViNE,,

=1-1%-fSels=(Ep/Q) /1% = #Sels< (Ep/Q),

ie., EE(O) ~ tSels (Ep/Q). The case for | satisfying the hypothesis (3) can be

similarly done, and the proof is completed. [

Remark. For the elliptic curve Ep/Q in (1.2) above, for every prime number
[ > 2, by Lemma 2.1 above, we have Ep(Q)[I>°] =0, so Ep(Qs)[[*°] = 0 because I'
is pro-l (see [Gr, p.102, line -10]). so Ep(Qu )tors 18 @ 2—group, i.e., its every element

is of 2—power order.

For the elliptic curve Ep/Q as in (1.2) above, let Qp be its Néron period. Now
we let [ be a prime number satisfying one of the following two hypotheses:
(1) 1 =3 and 31pgD;
(2) =17, T1pgD, and p = 2,3,6(mod7).

Then by Cor.2.2 above, we know that Ep has good supersingular reduction
at such [. By Lemma 2.1 above, we have ¢y = 2 or 4 for any prime number

' | Ng, = 2°pgD?, so our | { Tam(Ep/Q) = [, ... cr. Also by Prop.2.7 above,
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we have p;(Gg) = Glao(IF;). Therefore, if ord,(L(Ep/Q,1)/Qp) = 0, then over the
Z;—extension Q../Q as above, by The Theorem 0.1 of [Ku, p.196], we have the
following conclusion:

(1) (III (Ep/Quo)[I1>°)" =2 A as A—modules, where (ITI (Ep/Qs)[I°°])" is the Pon-
tryagin dual of 111 (Fp/Q)[I*];

(2) rank(Ep(Q,)) = 0 and § HI(Ep/Q,)[l*] = I** with e, = [f;: — %] for any
n > 0;

(3) (1 (Ep/Qu) )" = Z[Gal(@u/Q))/ (g, tn1n(0,,)) a5
Z,|Gal(Q,,/Q)]—modules for any n > 0, where 0g,, is the modular element of Mazur
and Tate (see [Ku| for the detail).

In fact, the Mordell-Weil group Ep(Q,,) in the above result (2) can be determined

as follows.

Theorem 4.4. Let Ep/Q be the elliptic curve in (1.2) above (E; = E in (1.1)
when take D = 1). Let [ be a prime number satisfying one of the following two
hypotheses:

(1) I =3 and 31pgD;

(2) {=7, T1pgD, and p = 2,3,6(mod7).

If ord;,(L(Ep/Q,1)/Qp) = 0, then over the Z;—extension Q. /Q as above, we have
Ep(Q,) =7Z/27Z x Z/2Z for all n > 0.

Proof. By the above discussion, we know that rank(Ep(Q,,)) = 0. So Ep(Q,) =
Ep(Qn)tors- Since Ep has good supersingular reduction at such I, Ep(Q(um+1)) does
not contain a point of order [ for any n > 0 (see [Ku, p.200, line-2]), where pyn+1 is
the group of "' —th roots of unity. Since Q is in fact the cyclotomic Z;—extension
of Q, we have Q,, C Q(pn+1), and so Ep(Q,)[l>°] = 0 for any n > 0. On the other
hand, [ is totally ramified in Q,. Let p,, be the unique prime ideal of Q, lying
over [, then the residue degree f(p,/l) = 1, and the residue field k,, = F;. So if
[ = 3, then by Lemma 2.1(6) above, we have Ep(Qp)iors/Ep(Qn)[3°] = Z/27 x
Z /27, and then our conclusion follows because Ep(Q,)[3*] = 0. If | = 7, then by
Lemma 4.2(1) of [QZ1, p.1379], we have $Ep(Qy)tors | ﬂﬁgpn(Fﬁ - 77 for some
t7 € Z>p. By Lemma 2.3 above, §Ep, (F;) = 8. Also, by the above discussion,
71 8Ep(Qn)tors- S0 $Ep(Qp)tors | 8- Obviously, Ep(Qp)ios O Fp(Qn)[2] = Z/27 %
Z[27, so Ep(Qp)iors = Z)27 x Z )27 or Z/27 x Z/AZ. The remainder is to show
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that Ep(Qn)sors Z Z/27 % Z/AZ, and this follows from the following

Assertion. Ep(Q(uz)) does not contain a point of order 4 for any n > 0.

To see this, firstly, by Lemma 2.1 above, Ep(Q)iors = Z/27 x Z/2Z, so we may
as well assume that n > 0. Obviously Ep[2] = {0, (0,0), (—epD,0), (—eqD,0)}, so
Ep(Q(psn)) contains a point P, of order 4 if and only if 2P, = (0,0), (—epD,0)
or (—eqD,0). And by Theorem 4.2 of [Kn, p.85], this is equivalent to say that
(we write ' = Q(um)): (a) epD,eqD € F? or (b) —epD,2eD € F?; or (c)
—eqD, —2eD € F?. But all of these cases are impossible because 7 is the unique
prime number which ramifies in F' and 7 1 pq. So the above Assertion follows, and

the proof is completed. [

5 L—function, root number and parity conjecture

Let E/Q be the elliptic curve in (1.1), and its quadratic D—twist Ep/Q in (1.2)
above. Let K = Q(v/D) and K’ = Q(v/—D). The (—D)—twist of such E is

E p=FE,: y*=x(x—epD)(z — eqD). (5.1)

So, E° , = EL°.
As before, Let L(E/Q,s), L(Ep/Q,s) and L(E_p/Q,s) be the L—functions of
E/Q, Ep/Q and E_p/Q respectively, and write
L(E/Q,s) =% a1(n)n"°, L(Ep/Q,s) = 3" ap(n)n”?,
L(E_p/Q,s) = ¥;Z a—p(n)n™"

with coefficients a1 (n), ap(n), a_p(n) respectively. Let

ACE/Q.5) = (LEYT(L(E/Q.5). AED/Q.5) = (Vi) T(s) L(ED/Q.5),
A(B-p/@.9) = (Y522 D) L(E-p/Q. 5),

where Ng, Ng, and Ng_,, are the conductors of £, Ep and E_p, respectively. Since
these curves are modular over Q, their L—functions have analytic continuation to

C and satisfy functional equations (see [Sill, p.362]):

AE/Q,2 —s) =wgA(F/Q,s), A(Ep/Q,2 —s) = wg, A(Ep/Q, s),
A(E_D/Q, 2 — S) = OJE_DA(E—D/@v S)a
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where wp,wg,,wg_,, € {1,—1} are the corresponding root numbers. Let xx and
Y be the quadratic Dirichlet characters associated to K and K’, respectively. Then
if (d(K),2Ng) =1, we have L(Ep/Q, s) = L(E/Q, xk, s) (see, e.g., [Koll, p.524],
[Kol2, p.475]). So L(E/K,s) = L(E/Q,s)-L(E/Q, xk,s) = L(E/Q, s)-L(Ep/Q, s)
(see also [DFK, p.186]), from which their root numbers satisfy wp/x = wg/q-wWey, /-
Similar for L(E_p/Q, s). We write

L(E/Q, xk,s) = X2 ,a1(n)xk(n)n=* with coefficients a;(n)xx(n).

Lemma 5.1. Assume that (D,2pq) = 1. Then for the above root numbers
wg,wg, and wg_,, we have
(1) if D = 1(mod4), then wg, = xx(—2pq)we.
(2) if D = 3(mod4), then wg_, = xx'(—2pq)wp.

Proof. The discriminants of the quadratic number fields K and K’ are

) D if D=1(mod4) n _ J —4D if D = 1(mod4)
d(K) = { 4D if D = 3(mod4), and d(K’) = { —D if D = 3(mod4),
respectively. If (d(K), Ng) = 1, then wg, = xx(—Ng)wg, and if (d(K'), Ng) = 1,
then wg_, = xx'(—Ng)wg (see [DFK, p.186]). Note that Nz = 2°pq, the conclusion
follows. O

The curve E/Q in (1.1) above is 2—isogeny to the following elliptic curve
B y* =1°—2e(p+q)a* + 4x, (5.2)

and the isogeny is as follows.

o: E—F, (z,y) = (x+ep+q) +pg-27", y—pgy-z72).

This will be used in the following calculation of the root numbers. Obviously, the
conductor of E'/Q is Ng, = Ng = 2°pq, and the discriminant is A = 2'2pq. Firstly,

we need the following result.

Lemma 5.2. Let E'/Q be the elliptic curve in (5.2) above.
(1) At each prime [ | Ngr, the Kodaira type is as follows:
I; forl=2,and [, for [ =por q.
(2) The Tamagawa number c; = 2 or 4, more precisely,
co = 2 if one of the following three hypotheses holds:
(a) p=3(mod8); (b) e=1and p=1(mod8); (¢) e =—1 and p = 5(mod8).
co = 4 if one of the following three hypotheses holds:
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(') p=T7(mod8); (b') e=1and p=>5(mod8); (/) e =—1 and p = 1(mod8).
(3) The Tamagawa numbers ¢, = ¢, = 1.
Proof. This is a consequence of direct calculation by the Algorithm of [Ta]. O

Now we come to calculate the root numbers.

Theorem 5.3. Let wp be the root number of the the elliptic curve £E/Q in
(1.1) above.

B _J 1 ifp=5,7 (mod 8)
(1) If e =1, then WE—{ —1 ifp=1,3 (mod 8);

B _J 1 ifp=3,5(mod 8)
(2) If e = —1, then wp = { —1 if p=1,7 (mod 8)

Proof. To begin with, from [Roh, p.122], we have wp = [ ], wi, where w; = +1
is the local root number. And by Prop.l in [Rohl, p.123] one has w, = —1,
so wg = — ], wi- Since the conductor is Np = 2%pq, for any prime number
[ # 2,p,q, E has good reduction at [, so by Prop.2(iv) in [Roh, p.126], we have
w; = 1 for every such [. Also, since £/Q has multiplicative reduction at both p and
q, by discussion in Lemma 2.1 above, and by Prop.3(iii) in [Roh, p.132], we have
(1) wy=w,=1ife=1andp=3,5 (mod 8);
(2) wp=w;=—1life=1and p=1,7 (mod 8);
3) wp=-1, w,=1if e =—1and p=1,3 (mod 8);
4) wy=1 w,=—1life=—1and p=5,7 (mod 8).
So the remainder is the most difficult factor ws. To work out wy, from [D], one can

obtain the following formula

Wz = ULP(E/QZ) ' (5(29 + Q)7 _pQ)Qz ’ (_25<p + Q)74)Q2’

recall that (,)g, is the Hilbert symbol (see [Se2, p.206]), ¢ is the isogeny in (5.2)

above, and here,

ficokerpo

O'@(E/@Q) _ (_1)ord2( Tkoroso ) — (_1)1—|—0rd2ﬁcokergpg7

where @9 : E(Qy) — E'(Qy) is the local homomorphism induced by ¢. Since
(,)g, is biadditive, we have (—2¢(p + ¢),4)g, = (—2e(p + ¢),2)5, = 1, s0 Wy =
0,(E/Qs)-(e(p+q), —pq)qg,- To calculate (e(p+q), —pq)q,, we consider the equation
e(p+q)® —pgy* = 1. Let f(z,y) = e(p+ q)2* — pqy* — 1, then 5L (z,y) = —2pqy,
and it is easy to see that ordy(f(1,1)) > 3 > 2-ord2(g—£(1, 1)). So by Hensel’s lemma
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(see [Sill, p.322]), f(z,y) has a root in Q3 x Qq, and so (e(p + q), —pq)g, = 1 (see
[Weib, Examp.6.2.2, p.253]). Therefore,

Wy = O'@(E/@Q) — (_1)1+ord2ﬁcokcr4p2'

To calculate the integer ficokeryps = §(E'(Q2)/¢2(E(Q2))), we use Lemma 3.8 of [Sc,
pp.91, 92]|. For this, let

x ,_ x+elp+q)+pga! y
z=——,and 2’ = — — =—= .
Yy — pqyr = —pgq
From the Chapter IV of [Sill], one has = = wfz) and y = —ﬁ, where w(z) =
P(1+e(p+q)z2+--+). So
, w(z) B P(1+elp+q)?+--+)

z = =
2 —pqw(z)? 22 —pgd(l+e(p+q)22 +---)?

=z(l+elp+@)2®+-) - L+pg*(L+e(p+g)2* +-- ) +-)

= 2z + (terms of higher degree),

i.e., the leading coefficient of 2’ is 1. So | ¢4(0) |;'= 1 (see [Sc, p.92]), and so by
Lemma 3.8 of [Sc, p.91], we get

ficokerpy = | £5(0) |31 -4E(Q2) o] - c2( ) _ EE(Q2) 2] 'CQ(E/)’

c2(E) co(E)

where ¢o(F) and co(E’) are the Tamagawa numbers of £ and E’ at 2, respectively,
and E(Qq)[¢2] = kerps = {0, (0,0)}. So by Lemma 2.1 and Lemma 5.2 above, we
get ficokerypy = 2 or 4, that is,

fcokeryps = 2 if one of the following three hypotheses holds:

(a) p=3(mod8); (b) €¢=1and p=1(mod8); (c¢) € =—1 and p = 5(mod8).
ficokeryps = 4 if one of the following three hypotheses holds:

(') p=T7(mod8); (b') e=1and p=>5(mod8); (¢/) e =—1and p = 1(mod8).
From this the value of 0,,(£/Q2) and hence w, is obtained. The proof is completed.
O

On the parity conjecture of some special £/Q in (1.1) above, we have

Corollary 5.4. Let E/Q be the elliptic curve in (1.1) above. If one of the
following three hypotheses holds:
(1) e=1and p=5 (mod 8);
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(2) e=—1and p=3,5 (mod 8);
(3) e=1, p=3 (mod 8) and q = a? + a3 with (a; +¢&1)? + (as + €2)* = a3 for some
rational integers aq, as, az € Z and some e1,¢e9 € {1, —1}.

Then the parity conjecture is true for £/Q, i.e., wp = (—1)=kEQ),

Proof. For the cases (1) and (2), by Theorems 1 and 2 of [QZ1], we have
rankF(Q) = 0, and for the case (3), by Theorem 3 of [QZ1], we have rankF(Q) = 1.

Then the conclusion follows from Theorem 5.3 above. [

Remark. As pointed out by an anonymous referee, the result of these special
E/Q in Cor.5.4 above also follows by Monsky’s theorem on the 2-parity conjecture,
because their 111 (£/Q)[2] have been shown to be trivial in [QZ1, Theorems 1,2].

Theorem 5.5. Let F/Q be the elliptic curve in (1.1) and let K = Q(y/uD)
be the quadratic number field with D in (1.2) and p = £1. We assume that D =
p (mod 4). Let L(E/Q, s) = ¥22,a1(n)n"* be the L—function as above. Let E,p/Q
be the quadratic (uD)—twist of F/Q, and xx be the quadratic Dirichlet character
associated to K.

(1) Assume one of the following two hypotheses holds:
(a) e=1and p=5,7 (mod 8);

(b) e =—1and p=3,5 (mod 8).

Then L(E/Q,1) = 2550, @l e=nm/2v20,

further, for all integer r > 0,

LY(E/Q,1) =275 a4 (n)/ [log” t + (—1)"log" (2°pqt)]e~ "™ dt. also,
1/4y/37

L(E,p/Q,1) = (1 + xx(—2pq)) - Eleal(n)

Xx(n) - e ™/2PV20E

In particular, if xx(—2pg) = —1, then L(E,p/Q,1) = 0.
(2) Assume one of the following two hypotheses holds:
(') e=1and p=1,3 (mod 8);

(b') e=—1and p=1,7 (mod 8).

Then L(E/Q, 1) =0,
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further, for all integer r > 0,

LY(E/Q,1) =275 a1(n) / log" t + (—1)"" log" (2°pqt)]e "™ dt. also,
14y

a1 (n) i e—nﬂ/QD\/%‘

L(EMD/Qv 1) =(1—xx(—2pq)) - X5, Xk (n)

In particular, if xx(—2pq) = 1, then L(E,p/Q,1) = 0.

Proof. Since F/Q is modular (see [TW],[Wi],[BCDT]), the function fg(z) =
S L ar(n)e?™* satisfies the Hecke equation fp(z) = —wpN 'z7?f(—x=), and
the differential fg(z)dz is invariant under the usual modular group I'o(N), where
N = 2%pq is the conductor, and wg is the root number of E/Q. Also by assump-
tion, the discriminant d(K) = puD satistfying (d(K),2Ng) = 1. So L(E,p/Q,1) =
L(E/Q, xk,1). Hence by Theorem 9.3 of [M, P.61], we have

L(B/Q.1) = (1 + wp)me, U -2,

L(E/Q,1) = 2752 a1(n) /OO [log" t + wg(—1)"log" (Nt)]e *"™dt,
1/vVN
L(Bun/Q1) = 22, M () + i) - L) () e V),
n 9(Xx)

2mib/d(K) s the Gaussian sum. Note that yx(n) =

where g(Xx) = 32, mod a(x) X (b)e
0,+1 (Vn € Z), so Xk = Xk, and g(xx) = g(Xx)- Then by our results about the

root numbers in Lemma 5.1 and Theorem 5.3 above, the conclusion follows. [J

Example 5.6. For the elliptic curves E : y?> = z(x + 3¢)(z + 5¢) and the
field K = Q(v/—119), the conductor Ny = 2° -3 -5 = 480 and the discriminant
d(K) = —119. By Theorem 5.3 above, the root number of E/Q is wg = —e. So
for the L—function L(E/Q,s), we have L(E/Q,1) = 0 in the case ¢ = 1. And in
this case, the Mordell-Weil group E(Q) = Z x Z/2Z x Z/2Z. For the other case
e =—1, B(Q) = Z/27Z x Z/2Z (see [QZ1, p.1373]), and by Theorem.5.5 above,
L(E/Q,1) = 252, @l e=nm/2V30 Noreover, d(K) = —119 = 61% (mod 4Ng). So
the Heegner hypothesis holds for £ and K, and then there is a Heegner point Py €
E(K) such that 0(2Pk) = —2wg Pk (see [Kol3,4]) because E(Q)tors = Z/27 X 7./ 27,
where o is the generator of the Galois group Gal(K/Q). Since wg = —¢, we have

0(2Pk) = 2¢ Pg. Now for any prime number [ > 37, the Galois representation p; is

irreducible (see [Cha, p.175]). Also every such prime number [ satisfies [ 1 d(K),[* {
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Ng, so by Cha’s theorem in [Chal, we have ord,f [II(E/K) < 2-ord;([E(K) : ZPg]).
U

Remark

I thank the anonymous expert for pointing out that the result of Corollary 5.4
above also follows by Monsky’s theorem on the 2-parity conjecture. Some further
application toward verifying the BSD for a family of elliptic curves will be discussed

in a separate paper.
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