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Abstract
   For centuries, medicinal plants have been playing an important 
role in the alleviation of various diseases, traditionally. Momordica 
charantia L. (M. charantia) is a folk medicinal herb belong to the 
Cucurbitaceae family, used as the folk medicinal regime for the 
treatment of diabetes or diabetic nephropathy (DN), traditionally. 
Due to the lack of scientific evidence based on its molecular 
mechanism for treating DN, the study is aimed to investigate 
the molecular mechanism of  M. charantia metabolites using a 
network pharmacology approach. Furthermore, ADME analysis 
was performed to determine the lipophilicity and the drug-likeness 
response of the metabolites. The network pharmacology results 
showed a multi-mechanistic and therapeutic role of the metabolites 
present M. charantia by regulating several genomes involved in 
the pathophysiology of DN. Mean while, M. charantia ameliorates 
endothelial dysfunction, fatty liver disease, diabetes mellitus, 
acute kidney injury, fibrosis, hypertensive disease, obesity, etc. 
furthermore, it was also found that the targets potentially play an 
essential role in the regulation of oxidative stress, inflammation, 
and oxidative stress-induced inflammation. In ADME analysis, each 
selected molecule of M. charantia exhibited good gastrointestinal 
(GI) absorption, lipophilicity and bioavailability response. Hence, it 
can be demonstrated that M. charantiapossesses several metabolites 
including polyphenols which exhibit an important role in the 
treatment of DN via regulation of several genomes such as AKTs, 
CASPs, MAPKs, ILs, NOs, etc, responsible for its pathophysiology. 
Furthermore, the generated evidence validates the traditional claim 
of M. charantia for alleviating DN.
Keywords: Momordica charantiaL., Polyphenols, Network 
pharmacology, ADME analysis
Introduction
   For centuries, medicinal plants have been playing an important 
role in the alleviation of various diseases, traditionally, because 
of their complexity in phytochemicals and multi-mechanistic and 
therapeutic effects. However, from the last decades, exponential 
growth has been seen in the utilization of medicinal plants and their 
derived products due to their least side effects, easy availability, and 
economic thus maintaining sustainable development inthe healthcare 
system and the economy of the country [1,2]. Furthermore, medicinal 
plants are acknowledged as the main source for new drug discovery 
and development as more than 50 percent of the existing drugs

are derived from natural resources. Taking a look into their 
uncountable use in the healthcare system, quality, safety, efficacy-
based assessment, and generating scientific evidence includes 
a big contribution for their regulatory aspects [3,4]. Based on 
the pharmacological perspective, it is not easy to determine the 
exact principle of phytochemicals that are being exhibited in the 
therapeutic response for the treatment of targeted or un-targeted body 
ailments. Bioassay-guided fractions or pharmacological assessment 
on individual phytochemicals from the targeted plant matrix provide 
us the factual information about the therapeutic response exhibited 
by the specific phytochemicals in the plant matrix [5–7].
   In-silico computational techniques are playing an essential role 
in drug design and development via evaluating interaction affinity 
of a newly developed molecule or isolated from natural resources, 
with the targeted proteins or genomes involved in the diseases 
[8,9]. Out of several computational techniques used to determine 
the biological effect of the compounds, network pharmacology in 
one of the advanced and newly admirable techniques is being used 
exponentially to evaluate pharmacological aspects of the drug-based 
interaction with a diversity of targeted or untargeted genomes. It 
is the most used technique to screen the pharmacologically active 
phytochemicals from a big data of plant matrix such as metabolomic 
and generating the molecular-based pharmacological evidence for 
their further applicability [10,11].
   Momordica charantia L. (M. charantia) is a folk medicinal herb 
belonging to the Cucurbitaceae family. It is widely distributed 
throughout the world in tropical and subtropical regions. 
Traditionally, it is used as the folk medicinal regime for the treatment 
of diabetes mellitus, and its fruit has been used as a vegetable. 
M. charantia hasa wide diversity of phytochemicals belonging to 
the class of steroids, triterpenes, polyphenols, polysaccharides, 
protein, etc. Furthermore, based on the current evidence various 
biological activities of M. charantia have been reported, such as 
antiviral, antitumor, antihyperglycemic, antibacterial, antimutagenic, 
antiulcer, antioxidant, antidiabetic, antifertility, anthelmintic, 
antilipolytic, anticancer, anti-inflammatory immunomodulation and 
hepatoprotective activities [12,13].
   Based on the above facts and their applicability to the molecular-
based pharmacological assessment of phytochemicals, the present 
study is associated to explore the molecular mechanistic role of M. 
charantia phytochemicals in the treatment of diabetes and diabetic 
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1.4. Gene Ontology (GO) analysis
   Gene Ontology (GO) analysis was performed to evaluate multiple 
pathophysiological of genes in DN. Metascape (metascape.org) 
AND network analyst (https://www.networkanalyst.ca/) tool were 
used to perform the analysis. The analysis involved the genes which 
were found to interact with the active metabolites. The common 
abbreviation of each gene was inputted in the search toolbar at the 
platform of metascape and network analysis. In this analysis, top 
enrichment outcomes were added as the outcome of the study [19–
21]. 
1.5. ADME analysis
   ADME (absorption, distribution, metabolism, and excretion) and 
toxicological analysis will be performed for selected metabolites 
through “SwissADME (http://www.swissadme.ch/index.php)” and 
ProTox-II-Prediction tool of toxicity of chemicals (https://tox-new.
charite.de/protox_II/index.php?site=home). TPSA (Topological 
Polar Surface Area (TPSA) for drug integrity, Consensus Log Po/w 
for drug lipophilicity, Log Kp (skin permeation) and drug-likeness 
were predicted as the standard parameters for selected the ADME 
response of  [22].
2. Results
   Eight active major metabolites were selected for the network 
pharmacology analysis based on their interaction and ligation 
efficacy with the screened genes. In the pre-screening analysis of 
potential targeted genes, 41 genes were selected which were even 
partially interconnected with the active metabolite and other genes. 
The analysis was performed based on the interaction efficacy of each 
target. The analysis showed that out of 84 genes, 41 genes were found 
to highly interact with the active metabolites and each target while 9
and 24 genes were found with the least even no interaction between 
the active metabolites and targeted genes. The genes summary has 
been summarized in Figure 1.

nephropathy (DN) and generating scientific evidence for M. 
charantia, which would laid a stable foundation for further research 
on exploring its pharmacological mechanisms in treating DN.
1. Material and methods
1.1. Selection of compounds   
   Some reported chemical constituents M. charantia were selected 
from different databases. The screened compounds were linalool, 
quercetin, gallic acid, apiole, ferulic acid, caffeic acid, limonene and 
catechin [14,15].
1.2. Selection of Potential DN Targets
   Several gene targets were selected from the gene card platform. 
The keywords like diabetic nephropathy or diabetes were inputted 
in the GeneCards (https://www.genecards.org/), a human gene 
compendium with information about genomics, proteomics, and 
transcriptomics, and UniPort gene database (https://www.uniprot.
org/), a comprehensive platform including one of the largest publicly 
accessible collections of genes, to search for DN-associated targets 
[16,17].
1.3. Screening Compound-Disease potential interacted Targets 
and active components network construction analysis
   Potential interacted target genes were screened through the 
integration analysis of the compound-gene network. The screened 
compound targets were imported into the STRING platform 
(https://string-db.org/), a software used mainly for functional 
enrichment and interaction network analysis of genes. Further, the 
integration analysis was performed using Cytoscape version 3.8.2. 
Protein-protein interactions (PPI) network and compound-proteins 
interactions were constructed and interaction information based on 
the number of nodes, the number of edges, average node degree, 
average local clustering coefficient were determined for constructed 
PPI. The analysis covered all the nearly functional interactions 
among the expressed proteins-proteins and compound-proteins 
network [10,18].

Figure 1: Pie chart of selected genes based on interaction
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embodied number of nodes:41, number of edges: 508, average node 
degree: 24.8, average local clustering coefficient: 0.844, expected 
number of edges: 182 and PPI enrichment p-value: < 1.0e-16.
In addition, the established PPIwas found significantly with more 
interactions than expected. The significant interaction of geneswas 
based on proteins of similar size selected from the genome database 
and characterized as at least partially biologically connected during 
DN. In the figure, the edges characterize the interaction between sets 
of potential targets, while the nodes characterize the targeted genes. 
The PPI network has been summarized in Figure 2.

2.1. Screening Compound-Disease potential interacted Targets 
and active components network construction analysis
2.1.1. Common target network (protein-protein and protein-
disease interaction)
   Forty-one putative target genes interconnected in pathophysiology in 
DN were further analyzed for protein-protein interactions and protein-
disease interaction. The analysis was conducted through the STRING 
database and Network analyst (https://www.networkanalyst.ca/). In 
PPI analysis, the gene-gene interaction network was established 
with a medium confidence score of 0.400. The established network 

Figure 2: PPI network generated through Cytoscape and STRING tool. Figure (A) represents the PPI generated by cytoscape tool based 
on experimental databased of the genomes, the pink line represents the interaction of the edges with nodes screened from experimental 

sources.  Figure (B) represents the PPI network generated by STRING database.

2.1.2. Active metabolites target genes network
   Active metabolites and target gene associated network was 
constructed and the outcome of the study revealed that each selected 
metabolite of M. charantia was found to potentially interact with 
each gene. In this analysis, edges that directly connected with the 
active metabolites were remained to appear, whereas the edges 
which were disappeared interconnected with each target (Figure 3). 
Quercetin was found to have strong interaction with targets such 
as NOS, ILs, CASPs, MAPKs, etc which were found to play an 
essential role in oxidative stress, inflammation, or oxidative stress-

induced inflammation. Ferulic acid was found to have interaction 
with G6PD, MAPK1, MAPK3, etc. Caffeic acid was found to have 
interaction with MAPKs, MMPs, and G6PD. Catechin was found 
to have interaction with NOS, PTGS2, PON1, ILs, etc. Gallic acid 
was found to have interaction with CASPs, AKT1, JUN, MMPs, etc. 
Apiole was found to have interaction with TP53 while limonene and 
linalool were found to have interaction with NOS, PPARG, TP53, 
etc. The constructed network of active metabolites and targets has 
been represented in Figure 3.
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2.1.3. Gene Ontology (GO) analysis
   GO analysis was performed to evaluate the multiple physiological 
roles of each gene for the regulation of DN. The observation of 
enriched terms across input genes and enrichment gene-disease 
network analysis suggests their physiological role in the management
of DN. The results showed multiple physiological roles of each target
in the regulation of DN via ameliorating endothelial dysfunction, 

fatty liver disease, diabetes mellitus, acute kidney injury, fibrosis, 
hypertensive disease, obesity, etc. furthermore, it was also found 
that the targets potentially play an essential role in the regulation 
of oxidative stress, inflammation, and oxidative stress-induced 
inflammation. The outcomes of the analysis have been summarized 
in Figure 4.

Figure 3: compound and protein interaction (CPI) network represents the active components with targets while quercetin 
showed the most prominent interaction.
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Figure 4: Gene ontology (GO) and gene-disease association analysis of potential genes were found to interact with the 
active compounds of M. charantia. Figure (A) represents the GO analysis while figure (B) represents the gene-disease 

association network.

No. UniProt ID Protein names Gene names Degree
1. Q07973 1,25-Dihydroxyvitamin D CYP24A1 4
2. P28223 5-Hydroxytryptamine receptor 2A HTR2A 6
3. P08253 72 kDa type IV collagenase MMP2 32
4. O00763 Acetyl-CoA carboxylase 2 ACACB 4
5. P30542 Adenosine receptor A1 ADORA1 4
6. P05091 Aldehyde dehydrogenase, mitochondrial ALDH2 1
7. P15121 Aldo-keto reductase family 1 member B1 AKR1B1 11
8. P12821 Angiotensin-converting enzyme ACE 28
9. P10415 Apoptosis regulator Bcl-2 BCL2 10
10. P11511 Aromatase CYP19A1 16
11. P21554 Cannabinoid receptor 1 CNR1 11
12. P42574 Caspase-3 CASP3 45
13. Q14790 Caspase-8 CASP8 25
14. P55211 Caspase-9 CASP9 22
15. P32246 C-C chemokine receptor type 1 CCR1 8
16. P04637 Cellular tumor antigen p53 TP53 44
17. P11597 Cholesteryl ester transfer protein CETP 5
18. P08123 Collagen alpha-2 COL1A2 8
19. P80365 Corticosteroid 11-beta-dehydrogenase isozyme 2 HSD11B2 3
20. Q00987 E3 ubiquitin-protein ligase Mdm2 MDM2 23
21. Q99814 Endothelial PAS domain-containing protein 1 EPAS1 10
22. P25101 Endothelin-1 receptor EDNRA 13
23. P00533 Epidermal growth factor receptor EGFR 45
24. P03372 Estrogen receptor ESR1 31
25. P49327 Fatty acid synthase FASN 16

Table 1. to be cont...
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26. P15090 Fatty acid-binding protein, adipocyte FABP4 15
27. P12104 Fatty acid-binding protein, intestinal FABP2 6
28. P07148 Fatty acid-binding protein, liver FABP1 15
29. P11413 Glucose-6-phosphate 1-dehydrogenase G6PD 8
30. P41235 Hepatocyte nuclear factor 4-alpha HNF4A 20
31. P04629 High affinity nerve growth factor receptor NTRK1 11
32. O14920 Inhibitor of nuclear factor kappa-B kinase subunit beta IKBKB 16
33. P39900 Macrophage metalloelastase MMP12 5
34. P14780 Matrix metalloproteinase-9 MMP9 40
35. P08235 Mineralocorticoid receptor NR3C2 5
36. P55851 Mitochondrial uncoupling protein 2 UCP2 12
37. P28482 Mitogen-activated protein kinase 1 MAPK1 45
38. Q16539 Mitogen-activated protein kinase 14 MAPK14 33
39. P45983 Mitogen-activated protein kinase 8 MAPK8 36
40. P22894 Neutrophil collagenase MMP8 11
41. P29474 Nitric oxide synthase, endothelial NOS3 40
42. P35228 Nitric oxide synthase, inducible NOS2 16
43. O75469 Nuclear receptor subfamily 1 group I member 2 NR1I2 6
44. Q13133 Oxysterols receptor LXR-alpha NR1H3 8
45. Q07869 Peroxisome proliferator-activated receptor alpha PPARA 20
46. Q03181 Peroxisome proliferator-activated receptor delta PPARD 7
47. P37231 Peroxisome proliferator-activated receptor gamma PPARG 37
48. P60484 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase 

and dual-specificity protein phosphatase PTEN
PTEN 37

49. P42336 Phosphatidylinositol 4,5-bisphosphate 3-kinase 
catalytic subunit alpha isoform

PIK3CA 26

50. P48736 Phosphatidylinositol 4,5-bisphosphate 3-kinase 
catalytic subunit gamma isoform

PIK3CG 12

51. O95477 Phospholipid-transporting ATPase ABCA1 ABCA1 14
52. P16284 Platelet endothelial cell adhesion molecule PECAM1 27
53. P25105 Platelet-activating factor receptor PTAFR 7
54. P09619 Platelet-derived growth factor receptor beta PDGFRB 23
55. P18054 Polyunsaturated fatty acid lipoxygenase ALOX12 ALOX12 4
56. P01133 Proepidermal growth factor EGF 45
57. P23219 Prostaglandin G/H synthase 1 PTGS1 8

58. P35354 Prostaglandin G/H synthase 2 PTGS2 41
59. P17252 Protein kinase C alpha type PRKCA 15
60. P05771 Protein kinase C beta type PRKCB 12
61. P25116 Proteinase-activated receptor 1 F2R 15
62. P16109 P-selectin SELP 14
63. P02753 Retinol-binding protein 4 RBP4 5
64. Q13464 Rho-associated protein kinase 1 ROCK1 12
65. O75116 Rho-associated protein kinase 2 ROCK2 8
66. P42345 Serine/threonine-protein kinase mTOR MTOR 32
67. P27169 Serum paraoxonase/arylesterase 1 PON1 7
68. P04278 Sex hormone-binding globulin SHBG 3
69. P13866 Sodium/glucose cotransporter 1 SLC5A1 2
70. P35610 Sterol O-acyltransferase 1 SOAT1 1
71. P08254 Stromelysin-1 MMP3 25
72. P05412 Transcription factor AP-1 JUN 40
73. Q04206 Transcription factor p65 RELA 35

Table 1. to be cont...
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74. P01137 Transforming growth factor beta-1 proprotein TGFB1 27
75. P07477 Trypsin-1 PRSS1 4
76. P01375 Tumor necrosis factor TNF 51
77. P19438 Tumor necrosis factor receptor superfamily member 1A TNFRSF1A 23
78. P20333 Tumor necrosis factor receptor superfamily member 1B TNFRSF1B 12
79. P30556 Type-1 angiotensin II receptor AGTR1 20
80. Q06124 Tyrosine-protein phosphatase nonreceptor type 11 PTPN11 22
81. P17706 Tyrosine-protein phosphatase nonreceptor type 2 PTPN2 7
82. P29350 Tyrosine-protein phosphatase nonreceptor type 6 PTPN6 14
83. P35968 Vascular endothelial growth factor receptor 2 KDR 33
84. P11473 Vitamin D3 receptor VDR 14

Table 1: Selected genes for DNfrom different databases

2.2. ADME analysis
   ADME analysis of selected metabolites was performed successfully 
using the computational tool “SwissADME”. The parameters such 
as TPSA, consensus Log Po/w, ESOL Log S values, GI absorption, 
BBB permeant and log Kp (cm/s) (skin permeation) were predicted 
to determine the ADME, lipophilicity and the drug-likeness response 
of the metabolites. The polar surface area (PSA) of metabolites 
was calculated using the fragmental technique TPSA. It acts as a 
useful descriptor in many models and rules to estimate some ADME 
properties, especially concerning absorption and brain access [23]. 
The consensus log Po/w is characterized as the arithmetic mean 
of five proposed methods of lipophilicity which represents the 
lipophilicity of anticipated molecules. The classical descriptor for 
lipophilicity is generally the partition coefficient between n-octanol 
and water (log Po/w). SwissADME dedicated this section due to the
critical importance for the assessment of physicochemical properties
for pharmacokinetic drug discovery using computational tools. The 
models accelerate the prediction accuracy for the physicochemical 
properties through consensus log Po/w [24]. The outcomes of the 
study revealed that a negative value of logP for each metabolite 
means that the compound poses a high-affinity hydrophilic nature, 

while a positive value of logP represents the lipophilicity of the 
molecule. Similarly, Potts and Guy provided a model to predict skin 
permeability using the skin permeability coefficient (Kp). The more 
negative the log Kp (with Kp in cm/s), the less skin permeant the 
molecule [22]. Our findings suggest that each metabolite possesses 
high skin permeability, as the log Kp values for these molecules were 
less than -8.00. The outcomes of ADME analysis are summarized in 
Tables 2 and Figure 5.
   The blood-brain barrier (BBB) permeant affinity of the molecules 
depends on two physicochemical descriptors only (consensus log 
Po/w and TPSA) which represent lipophilicity and apparent polarity. 
In case, If the egg-shaped molecular classification plot covers the 
yolk, it means that the molecule exhibits physicochemical space 
for highly probable BBB permeation, while it remains within the 
range of the white which represents the physicochemical space for 
highly probable HIA absorption. In addition, both compartments 
are not mutually exclusive by the molecule and remain outside the 
gray region, representing the molecules implying low absorption and 
limited brain penetration [22]. The outcomes of our study suggest 
that ferulic acid, apiole, linalool and limonene exhibited high BBB 
permeant affinity, excluding other compounds. The boiled egg plot of 
ADME analysis is summarized in Figure 6.

Molecule Canonical 
SMILES

Formula MW TPSA iLOGP Consensus 
Log P

log Kp 
(cm/s)

Bioavail-
ability Score

BBB 
permeant

Gallic 
acid

OC(=O)c1cc(O)
c(c(c1)O)O

C7H6O5 170.12 97.99 0.21 0.21 -6.84 0.56 No

Ferulic 
acid 

COc1cc(/C=C/
C(=O)O)ccc1O

C10H10O4 194.18 66.76 1.62 1.36 -6.41 0.85 Yes

Caffeic 
acid 

OC(=O)/C=C/
c1ccc(c(c1)O)O

C9H8O4 180.16 77.76 0.97 0.93 -6.58 0.56 No

catechin Oc1cc2O[C@H]
(c3ccc(c(c3)O)O)
[C@H](Cc2c(c1)
O)O

C15H14O6 290.27 110.38 1.33 0.83 -7.82 0.55 No

Quercetin Oc1cc(O)c2c(c1)
oc(c(c2=O)O)
c1ccc(c(c1)O)O

C15H10O7 302.24 131.36 1.63 1.23 -7.05 0.55 No

Linalool C=CC(CCC=C(C)
C)(O)C

C10H18O 154.25 20.23 2.7 2.66 -5.13 0.55 Yes

Apiole C=CCc1cc(OC)
c2c(c1OC)OCO2

C12H14O4 222.24 36.92 2.85 2.44 -5.7 0.55 Yes

Limonene CC1=CCC(CC1)
C(=C)C

C10H16 136.23 0 2.72 3.37 -3.89 0.55 Yes

Table 2: ADME analysis of selected metabolites of M. charantia
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Figure 5: ADME analysis of selected compounds in M. charantia. Figure 1 represents the chemical structure and 
ADME radar plot of Gallic acid, Figure 2 represents the chemical structure and ADME radar plot of Ferulic acid, 
Figure 3 represents the chemical structure and ADME radar plot of Caffeic acid, Figure 4 represents the chemical 
structure and ADME radar plot of catechin, Figure 5 represents the chemical structure and ADME radar plot of 
Quercetin, Figure 6 represents the chemical structure and ADME radar plot of Linalool, Figure 7 represents the 
chemical structure and ADME radar plot of Apiole and Figure 8 represents the chemical structure and ADME radar 

plot of Limonene.

Figure 6: ADME Boiled egg plot of M. charantia constituents such as Gallic acid, Ferulic acid, Caffeic acid, catechin, 
Quercetin, Linalool, Apiole and Limonene.



Page 9 of 10

J CAM Res Progress
Volume 1. 2022. 102                                                                                                                                                                                    

3. Discussion
   Forcenturies, medicinal plants have been playing an important 
role in alleviating several acute and chronic disorders due to their 
multi-mechanistic approach to cure even treating the ailments. M. 
charantia is an Indian herb used to treat various disorders including 
diabetes, traditionally. M. charantia possesses several varieties of 
phytoconstituents which belong to the class of terpenoids, steroids, 
polyphenols, etc., and reported for treating diabetes, the present 
study is associated for validation of traditional therapeutic claim M. 
charantia in alleviating diabetes or DN using network pharmacology 
approach.
   In this study, several genes were selected from different gene 
databases and explored for their multi-mechanistic role in alleviating 
DN. The study was performed on some selected metabolites such as 
quercetin, gallic acid, apiole, ferulic acid, caffeic acid, etc and the 
outcomes of the analysis revealed that, among eight metabolites, 
quercetin was the most active compound of M. charantia, which 
were found to have interaction with several genes such as nitric oxide 
synthases (NOS), caspases (CASPs), mitogen-activated protein 
kinase (MAPKs), matrix metalloproteinase (MMPs), in DN. NOS, 
CASPs, and MAPKs play an important role in the regulation of 
inflammation [25, 1]. Metalloproteinases (MMPs) play an essential 
role in diabetic wound healing by removal of damaged extracellular 
matrix (ECM) during the inflammatory phase, breakdown of the 
capillary basement membrane for angiogenesis and cell migration 
during the proliferation phase, as well as in construction and 
remodeling of tissue [26]. AKT is responsible for the regulation of 
glucose uptake by mediating insulin-induced translocation of GLUT4 
but endogenous AKT is likely to play a significant physiological role 
in insulin-stimulated glucose uptake in insulin targets such as muscle 
and adipose tissue [27].
   Several studies have demonstrated that phenols exhibit potential 
anti-inflammatory action by suppression of IL-4, TNF, NF-κB, 
MAPKs activation, and expression of the Na+/Ca2+ exchanger [28]. 
Quercetin down regulates the expression of IL-1β, IL-6, IFN-γ, and 
TNF-α secretion and thus regulates the inflammatory stress [29].
PONs proteins play an important role in dyslipidemia-induced 
CKD. Quercetin exhibits potential interaction with PONs and thus 
regulating dyslipidemia-induced CKD [30]. Gallic acid exerts anti-
inflammatory, anti-oxidative stress, and nephroprotective effects by 
regulation of TNF, IL-1B, AKT, CASP3, and STAT/JUN [1,31,32]. 
Ferulic acid exhibits a protective effect against diabetic nephropathy 
by attenuating oxidative insult, inflammation, and autophagy. The 
underlying mechanism of ferulic acid was established and revealed 
AGEs, NF-κB, MAPKs CASPs, JNK, and ERK are the most 
regulated proteins in renal pathophysiology [33,34].
   It is reported that catechins exert a protective effect against 
inflammation, diabetes-induced renal oxidative damage, fibrosis, 
and albuminuria via the regulation of several genomes involved in 
oxidative and inflammatory stress. Furthermore, it is reported that 
catechins are the most prominent active against IL-6, inducible nitric 
oxide synthase, and nitrite and reducing oxidative stress-induced 
inflammation.
4. Conclusion
   Based on the above facts, it can be demonstrated thatM. charantia 
possesses several metabolites including polyphenols which exhibit 
an important role in the treatment of DN via regulation of several 
genomes such as AKTs, CASPs, MAPKs, ILs, NOs, etc, responsible 
for its pathophysiology. Furthermore, the generated evidence 
validates the traditional claim of M. charantia for alleviating DN.
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