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Abstract therefore, SZ is also regarded as a misconnection syndrome [2]. BD

Schizophrenia and bipolar disorder are difficult to differentiate
without multiple clinical visits. Few studies have achieved successful
differentiation. To accurately classify these two disorders, the present
study used network resilience to generate features because of its
ability to reflect the topology of a functional network. We recruited
56 patients with schizophrenia, 51 patients with bipolar disorder, and
50 healthy controls who were separated into training and testing sets.
To compare the classification performance of network resilience,
we used intra- and inter-network connectivity by computing the
correlation of the same or different networks, decomposed through
independent component analysis. Results indicated that the
classification performance of network resilience outperformed that of
network connectivity (accuracy: 0.81 > 0.63 for the training set; 0.80
> 0.31 for the testing set). The network resilience of schizophrenia
had a closer similarity to a random network, because schizophrenia
demonstrates disruption in central hubs, which are regions with many
connections. The superior classification performance of network
resilience may be the result of more pervasive dysconnectivity and
more disrupted hub connectivity in schizophrenia than in bipolar
disorder. Moreover, large variations in schizophrenia may inhibit
the classification performance of network connectivity. Therefore,
network resilience can be a compelling marker for differentiating the
neuropsychiatric disorders of schizophrenia and bipolar disorder.

Keywords: Classification, Schizophrenia, Bipolar Disorder, Network
Resilience, Hubs, Machine Learning.

Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are two common
neuropsychiatric disorders. SZ is a psychotic disorder characterized
by extensive impairments in thought, attention, affect, and motor
performance [1-3]. The diverse symptoms of SZ can result from
aberrant interactions or the integration of distributed brain regions;

is characterized by episodic fluctuations in mood when the activity
and connectivity of brain regions that mediate emotional regulation
are disrupted [4-6]. These two neuropsychiatric disorders have been
found to have distinguishable and multifaceted abnormalities [7].
However, differentiating between SZ and BDis difficult without
multiple clinical visits [8] because they share apparent clinical
symptoms, genetic risk mechanisms, and neurocognitive dysfunction
[91.

To distinguish SZ from BD, the resilience of brain networks may
be a potential marker. Resilience analysis has been used to measure
the robustness of the effects of brain lesions by using simulated
attacks. This analysis is conducted by removing regions and their
connections according to specific targeted properties [10-13].
Random networks, in which the majority of nodes have a similar
number of connections, are highly resilient to damage. However,
brain networks (small-world networks) are more vulnerable in scant
brain regions with many connections, which are referred to as hubs.
Hence, the architecture of small-world networks fragments rapidly
in response to damage [10, 14, 15]. Because resilience analysis can
reflect the architecture of the human brain network, it has also been
used in research into neuropsychiatric diseases and aging [16-19].
Lo et al. [17] found that the global efficiency of patients with SZ and
their siblings was degraded more severely by targeted attacks than
was that of healthy control (HC) subjects, indicating that topological
abnormalities of functional networks were evident not only in patients
with SZ but also in their nonpsychotic relatives. Targeted attacks on
connectivity hubs were especially likely to degrade global properties
of small-world networks, such as global efficiency. Therefore, in the
present study, we targeted betweenness centrality for measuring hub
connectivity and global efficiency as a response to attacks.

Because the organization of hub connectivity has been found to be
more aberrant in patients with SZ than in those with BD [13, 21, 22],

we hypothesized that resilience analysis provides a novel approach
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to classify these two highly similar neuropsychiatric disorders.
Furthermore, we hypothesized that resilience analysis has the
potential to be a robust and reliable differentiation tool for diagnosis.
The aim of this study was to explore whether differences in the global
characteristics of brain functional networks between SZ and BD can
be used in diagnosis using resilience analysis.

Materials and Methods
Participants

A total of 56 patients with SZ, 51 patients with BD type I, and 50
HCs were recruited. The SZ and BD groups included both outpatients
and inpatients at Taipei Veterans General Hospital, Taiwan.
Patients’ diagnoses were confirmed according to the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition on the
basis of structured clinical interviews. The Positive and Negative
Syndrome Scale (PANSS) was used to measure patients’ symptom
severity [23]. Approximately 57% of patients with BD had been
classified as psychotic during one or more illness episodes. Potential
participants were excluded if they had substance abuse history or
dependence during the previous 6 months or history of head injuries
with documented sustained loss of consciousness, neurological
sequelae, or both. The investigation was conducted according to
the latest version of the Declaration of Helsinki. All participants
provided written informed consent prior to their participation and
after the procedures had been fully explained. The present study
was approved by the Research Ethics Committee of Taipei Veterans
General Hospital.

Resting-State Functional and Structural Magnetic Resonance
Imaging

Scanning was conducted at the Taipei Veterans General Hospital by
using a 3.0-T GE magnetic resonance imaging (MRI) scanner (GE
Healthcare Life Sciences, Little Chalfont, UK) with a quadrature
head coil. Subjects’ heads were immobilized with a vacuum-beam
pad inside the scanner. All participants wore earplugs to muffle the
noise. Resting-state functional images were obtained using a T2*-
weighted gradient-echo, echo-planar sequence (repetition time [TR]
= 2500 ms, echo time [TE] = 30 ms, flip angle [FA] = 90 degrees,
and voxel size = 3.5 x 3.5 x 3.5 mm). A total of 200 MRI volumes
of each subject were obtained with their eyes closed. A functional
whole-brain image volume was composed of 43 interleaved
horizontal slices, which were parallel to the intercommissural plane.
Furthermore, anatomical whole-brain image volumes were obtained
using a sagittal magnetization-prepared rapid acquisition gradient-
echo three-dimensional T1-weighted sequence (TR = 2530 ms, TE
= 3 ms, echo spacing = 7.25 ms, FA = 7 degrees, field of view =
256 x 256 mm, voxel size =1 x 1 x 1 mm) for more efficient spatial
registration and localization of activity, as well as to further correct
for anatomical differences that might affect the interpretation of the
functional analysis.

Preprocessing for Resting-State Functional MRI

Imaging data were preprocessed using DPABI (http://rfmri.org/
DPABI) according to the following steps: (1) slice-dependent time
shifts were compensated for; (2) the initial eight volumes were
excluded; (3) head motion was corrected for and participants with
head motion larger than 3 mm or 3° were discarded; (4) functional
imaging volumes were coregistered with their own anatomical images;
(5) spatial normalization into the Montreal Neurological Institute
space was performed using a nonlinear warping algorithm; and (6)
smoothing was conducted using a 6-mm full-width half-maximum
Gaussian kernel. After smoothing, spurious data were removed
using a regression model containing the six parameters obtained
using rigid-body affine transformation during preprocessing, the
mean whole-brain signal, the mean signal from the lateral ventricles,
and the mean signal within a deep-white-matter region of interest.
Subsequently, band-pass filtering from 0.01 to 0.08 Hz was applied
to the imaging data.

Functional Connectivity Analysis

Functional connectivity was conducted by parcellating the whole

brain into 116 regions according to the automatic anatomical labeling
template [24]; this template is widely used and demonstrates small-
world topology and resilience [10]. The correlation between each
pair of regional time series of the 116 regions was examined using
Pearson’s correlation coefficient and then converted using Fisher’s
r-to-z transformation [25]. Consequently, functional networks for
each patient were obtained as a 116 x 116 normalized, symmetric
correlation matrices. The absolute values of correlation matrix
elements were analyzed using one-sample t-tests, and values less
than the lower bound of the 99.9% confidence interval (CI) were
removed. The threshold was based on individual significance
levels for discarding spurious connections [26, 27]. Subsequently, a
binary adjacency matrix was generated by converting the remaining
absolute z-values to 1 and the others (including diagonal elements)
to 0. Graph theory and resilience analyses were performed on these
nonzero, binary adjacency matrices.

Graph Theory and Resilience Analyses

The topological properties of brain networks were quantified
using a theoretical graph analysis, which uses a graph to provide an
abstract representation of a small-world system’s elements and their
interactions [28]. The small-world topology and hierarchy of brain
networks were evaluated by calculating the small-worldness and
betweenness centrality, respectively. Compared with an Erdds—Rényi
random network, the clustering coefficient of a small-world network
is higher but their characteristic path lengths are nearly equal.
The characteristic path length (L)refers to the minimum number
of connections between one region of the brain and another. The
clustering coefficient (C/) quantifies the proportion of connections
that exist between the neighbors nearest to a brain region and was
obtained as follows:

. 2F;
Cl(i) = ———.
ki(k;—1)
where k; is the number of connections between node i and other nodes
and ¢, is the number of triangles attached to node i. Subsequently, the
value of small-worldness (sw) was calculated using
Ccl/Clg

L/Lg
where Cl, and L, are the clustering coefficient and characteristic path
length of the random network, respectively. Betweenness centrality
is a measure of the number of shortest paths between all other node
pairs in the network passing through it. Brain regions with high
centrality are crucial for efficient communication. To compute the
betweenness centrality of a node i, the proportion of the shortest
paths between nodes j and / that pass through / were obtained using

SW =

i p— —l . or P —-‘i‘—ph -(Ej
CB(E) = (N_]_](N_z]zh:t:,,;:t;,;:th E

where p, (7) is the number of the shortest paths between nodes j and
h that pass through I; ;p,; is the number of the shortest paths between
j and h; and (N—1)(NV- 2) is the number of node pairs that does not
include node i. Furthermore, for further resilience analysis, global
efficiency, which is the reciprocal of the average of the shortest path
length between all possible pairs of nodes, was calculated to measure
the integration and efﬁciency of the global network.

Eglob = N(N—1) Er,i_; 1is
where /_ is the shortest path length from node j to node i. The values

of small-worldness and global efficiency in the three groups were
also compared using one-way ANOVA.

To assess the resilience of a brain network, we used betweenness
centrality as the target for a targeted attack by deleting one brain
region at a time in descending order of betweenness centrality. After
each brain region was deleted, the global efficiency of residual
brain regions was divided by the global efficiency of the original
brain network prior to the attack to compute the normalized global
efficiency. The process was repeated until only the last cluster in the
residual network remained. In addition, targeted elimination of nodes
in the random network with the same mean connection density was
computed for comparison.
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Independent Component Analysis

Next, a group-level temporal concatenation independent component
analysis (group ICA) was performed from the preprocessed imaging
data of the HC group to extract group representative large-scale
networks by implementing FSL’s Multivariate Exploratory Linear
Optimized Decomposition into Components (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/MELODIC) version 3.0. Such brain network
decompositions allow for a simultaneous separation into spatially
and maximally independent resting-state networks for the whole
brain. The 75 independent components (ICs) were decomposed
because the high-order ICA has been demonstrated to correspond to
known anatomical and functional segmentations [29, 30]. The ICs
were created to allow for the adequate modeling of both resting-
state networks and artifacts, including noise and physiological
signals [31]. A threshold level of 0.5 was set for IC maps. To extract
putative intrinsic networks (INs), ICs were evaluated by detecting
peak activations in the gray matter; a low spatial overlap with known
vascular, ventricular, motion, and susceptibility artifacts; and time
courses dominated by low-frequency fluctuations [32, 33]. Each IN
was classified according to relevant studies [33-36]. Subsequently,
regression-based back-reconstruction was performed to produce
specific time courses of each subject’s intrinsic functional brain
network. Next, theintra-andinter-network connectivity were calculated
through a cross-correlation between the time courses of pairwise
components by using Pearson’s correlation coefficient. Fisher’s
r-to-z transformation was used to normalize correlation coefficients
into z-scores. Furthermore, the average network connectivity
between and within specific networks and differences among the
three groups were computed. In addition, to better realize the effect
of resilience analysis, graph theory and resilience analysis was also
implemented on the connectivity of intrinsic networks, referring to as
the resilience of gICA network connectivity.

Classifier Selection and Feature Extraction for the Classification

The present study evaluated the classification performance of
the classifier for network resilience as well as for the intra- and
inter-network connectivity. We used several well-known linear and
nonlinear classifiers, including the decision tree [37], support vector
machine (SVM) [38], k-nearest neighbor (KNN) [39], and ensemble
[40] models. All the classifiers used MATLAB (version 2017b;
Math Works, Inc., Natick, MA, USA). This study separately used
the classifiers with the greatest accuracy for features extracted from
resilience and network connectivity.

The participants in each group were randomly separated into
a training set and a testing set. Each training set consisted of
approximately two-thirds of each group (38 participants in the SZ
group, 34 in the BD group, and 34 in the HC group). To balance
the number of features extracted from resilience and network
connectivity, we selected consistent and reliable features of network
connectivity by using minimum-redundancy maximum-relevance
(mRMR) feature selection from the three groups [41]. The first 115
reliable intra- and inter-network connectivities were chosen for the
classifier. The resilience and the network connectivity were separately
used to train the classifiers by ten-fold cross-validation. Moreover,
in repeated cross-validations, the model from resilience and from
network connectivity were each retrained 100 times with randomly
selected training samples for each group to ensure the robustness
of the trained model. The testing sample included the remainder of
the participants (18in the SZ group, 17 in the BD group, and 16 in
the HC group). The accuracies, sensitivities, and specificities of the
training and testing samples of the most optimal trained model were
used to compare the classification performance of these two types of
feature. The process of feature extraction and classifier selection for

-

Qo select the optimal classifier.

Figure 1. Overview of the classification process. After preprocessing resting-state functional
magnetic imaging data, two approaches to feature extraction were used: group independent
component analysis (ICA) and resilience analysis. The resting-state data of healthy controls were
decomposed into 75 components; then, the back-reconstruction method was used to estimate the
spatial maps and time courses of all participants. Time courses of 43 components, which were
identified as intrinsic connectivity networks, were used to compute the intra- and inter-network
connectivity. Minimum-redundancy maximum-relevance feature selection was used to select 115
features from a total of 903 connections. Then, 115 normalized global efficiencies were classified
after targeted elimination, and 115 intra- and inter-network connections were trained separately

the classification is showed in Figure 1.
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Statistical Analyses

Differences across the SZ, BD, and HC groups in terms of network
resilience after each targeted attack and intra- and inter-network
connectivity were assessed using one-way analysis of variance
(ANOVA) with multiple comparisons corrected for and the false
discovery rate (FDR) correction (q< 0.05) applied [42]; subsequently,
Bonferroni post-hoc tests were also used [43].

Results

According to the demographic data, no significant differences
existed in terms of age or sex across the three groups as well as
in terms of age at onset between the two patient groups (Table 1).
However, significant differences were observed in terms of duration,
which could be the result of only patients with SZ being those in

a stable phase. The total PANSS scores were significantly different
between the SZ and BD groups (including 29 patients who had
psychosis). Furthermore, the three groups did not differ significantly
in terms of mean response time in the 1-back working memory test
but differed significantly in terms of correct number in the same
test as well as in mean response time and correct number in the
2-back working memory test (p<0.05). Pairwise differences were
investigated using Bonferroni post-hoc analysis, and results showed
that significant differences existed between the SZ and HC groups
as well as between the BD and HC groups. This indicated that both
the SZ and BD groups had poorer working memory than did the HC
group, especially in the more difficult task; however, the two patient
groups showed no significant difference.

( SZ BD HC p-value \
Sample size 56 51 50
Age (years) 32.8 £ 9.19 34.8 £10.46 32.5 + 8.56 0.418
Gender 0.954
Male, N(%) 28 (50.0%) 25 (49.0%) 26 (52.0%)
Female, N(%) 28 (50.0%) 26 (51.0%) 24 (48.0%)
Onset age 247 + 7.54 232 + 943 0.369
Duration 82 + 6.77 114 + 8.47 0.036
PANSS 61.0 £ 12.37 39.8 £ 16.72 <0.001
Psychosis, N(%) 29 (56.9%)
Antipsychotics 3233 +£ 17431 | 216.6 £ 202.53
(chloropromazine
equivalent)
Mood stabilizer, N(%) 47 (92.2%)
Working memory (1-back)
Mean (ms) 626.5 + 148.65 | 669.4 £ 252.17 | 559.6 + 127.12 0.061
Correct (N) 13.8 £ 1.79 142 £ 1.50 149 + 0.32 0.0022°
Working memory (2-back)
Mean (ms) 856.2 + 171.07 | 827.6 + 256.30 | 640.3 + 167.20 | <0.001*°
Correct (N) 10.1 + 3.87 11.6 + 3.53 13.4 + 227 <0.001*
“There was a significant difference between SZ and HC; ® there was a significant difference between
BD and HC.
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control

K Tables 1: Demographic data W,

Features from the Resilience Analysis

For each participant, 115 values existed for normalized global
efficiency until the last cluster remained. These 115 values were then
used as features to train the classification model for the resilience
analysis.

Features from Intra- and Inter-Network Connectivity

After artifactual ICs were removed, 43 components remained,
which generated 903 connections of pairwise components. As
Figure 2 shows, these networks were classified into the somatomotor
network (SMN), visual network, executive network (ECN), default-
mode network (DMN), salience network (SN), auditory network
(AN), subcortical regions (SUB), and cerebellum (CB). Based on
the network that each component belonged to, the intra- and inter-
network connectivity in each of the three groups were estimated,
and 115 connections were selected among the 903 connections using
mRMR.

Classification Performance

Because there are individual variations in the network properties
within each group, we adopted the group order of betweenness
centrality and removed the nodes one by one to re-compute the global
efficiency as features. The same order was applied for testing samples
too. The most optimal model was determined to be the ensemble
model (subspace discriminant) for both resilience and network
connectivity. As shown in Table 2, both overall accuracies [95% Cls]

for classifying the training and testing samples on features extracted
using resilience analysis (81.13% [88.58%, 73.68%] and 80.39%
[91.29%, 69.49%]) were higher than those extracted using intra-
and inter-network connectivity (63.21% [72.39%, 54.03%] and
31.37% [44.10%, 18.64%]). The p-values of the proportion test
for training and testing accuracies from the two feature extraction
approaches were 0.004 and <0.001, respectively, indicating a
significant difference between resilience and network connectivity
features. The sensitivities, specificities, and areas under the ROC
curve (AUCs) for the model of resilience were all superior to that of
network connectivity (Table 2 and Figure 3). Both the AUCs for the
models from resilience and network connectivity were as follows:
HC > SZ > BD. In addition, the classification performance of
resilience was also compared with functional connectivity in which
the respective features derived from the same parcellation, namely,
AAL. The initial features for the functional connectivity derived
from AAL parcellation were 6670 connections in total, which were
in turn selected by mRMR and reduced to 115 connections. The
classification results of using functional connectivity as features
showed that the overall accuracies [95% Cls] for classifying the
training and testing samples were 61.32% [70.59%, 52.05%)] and
29.41% [41.92%, 16.91%], respectively (Table 2). The p-values of
the proportion test were 0.001 and <0.001 for training and testing
samples, respectively. Therefore, even using the same parcellation,
the classification performance of resilience was still superior to
that of functional connectivity. Moreover, Table 3 indicated the
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classification performance with the features extracted from the
resilience and connectivity of intrinsic networks with the same
number of features. For the training samples, the results exhibited that
the overall accuracies [95% confidence intervals] for resilience and
network connectivity were 53.77% [63.27%, 44.28%] and 66.04%
[75.05%, 57.02%], respectively; for the testing samples, were 37.25%
[50.52%, 23.99%] and 35.29% [48.41%, 22.18%], respectively. The

p-values of proportion test for the training and testing samples were
0.068 and 0.837, respectively. Accordingly, the difference between
the classification performance of resilience and that of network
connectivity was insignificant. In addition, Table 4 demonstrated
the average of means and standard deviations of all features for the
classification. All types of features except the resilience of AAL-
based functional connectivity had high standard deviation.

~

Predicted Confusion matrix Proportion test
class Accuracy(%) with resilience
True class SZ BD HC Sensitivity | Specificity | [95% CI] analysis (p-value)
Resilience
Training
SZ (n=38) 32 4 0.84 0.90
BD (n=34) 4 26 4 0.76 0.88 81.13
HC (n=34) 2 4 28 0.82 0.91 [88.58.73.68]
Testing
SZ (n=18) 15 1 0.83 0.90
BD (n=17) 1 14 0.82 0.90 80.39
HC (n=16) 2 2 12 0.75 0.88 [91.29, 69.49]
Network connectivity
Training
SZ (n=38) 22 9 7 0.58 0.76
BD (n=34) 7 22 5 0.65 0.78 63.21 0.004
HC (n=34) 7 4 23 0.68 0.79 [72.39,54.03]
Testing
SZ (n=18) 3 15 0 0.17 0.72
BD (n=17) 4 12 1 0.71 0.12 ?;43170, 18.64] <0.001
HC (n=16) 1 14 1 0.06 0.94
Functional connectivity
Training
SZ (n=38) 23 7 8 0.61 0.78
BD (n=34) 7 20 7 0.59 0.76 61.32 0.001
HC (n=34) 5 7 22 0.65 0.74 [70.59, 52.05]
Testing
SZ (n=18) 4 11 3 0.22 0.69
BD (n=17) 4 5 8 0.29 0.33 29.41 <0.001
HC (n=16) 1 9 6 0.38 0.45 [41.92, 16.91]
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; CI: confidence interval.
Table 2. Ensemble (subspace discriminant) classification of resilience analysis, intra- and inter-network connectivity using

independent component analysis (ICA), and functional connectivity measured by AAL parcellation

J

N
-

N

Figure 2. Thresholded spatial maps of 43 intrinsic connectivity networks were classified into eight networks. Each network is
exemplified by one or two components.

~

J
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Predicted Confusion matrix Accuracy(%) | Proportion test with
class Sensitivity | Specificity | [95% CI] resilience analysis
True class SZ BD HC (p-Value)
Resilience
Training
SZ (n=38) 21 12 0.55 0.68
BD (n=34) 11 16 7 0.47 067 |3377
[63.27, 44.28]
HC (n=34) 6 8 20 0.59 0.76
Testing
SZ (n=18) 8 10 0 1
BD (n=17) 10 0.59 038 |[37:25
[50.52, 23.99]
HC (n=16) 7 0.56 0.37
Network connectivity
Training
SZ (n=38) 26 8 0.68 0.81
BD (n=34) 7 21 0.62 075 | 06004 0.068
[75.05, 57.02]
HC (n=34) 8 23 0.68 0.82
Testing
SZ (n=18) 4 10 4 0.22 0.61
BD (n=17 4 12 1 0.71 0.24 3529 0837
(0=17) : : [48.41, 22.18]
HC (n=16) 5 9 2 0.13 0.76

SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; CI: confidence interval

N

both by using group independent component analysis (gICA)

Table 3. Ensemble (subspace discriminant) classification of resilience analysis, and intra- and inter-network connectivity

J

N

( AAL-based connectivity Network connectivity
Sz 0.062 =+ 0.2366 -0.037 + 0.2425
BD 0.079 + 0.2105 -0.037 £+ 0.2214
HC 0.101 + 0.2248 -0.052 + 0.2625
Resilience of AAL-based | Resilience of gICA network
connectivity connectivity
Sz 0.843 + 0.0582 0.797 + 0.1307
BD |0.845 £ 0.0630 0.834 + 0.1294
HC ]0.840 £ 0.0575 0.839 + 0.1237
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; gICA:
group independent component analysis.

\___ Table 4. The average of features’ mean and standard deviation _/

Figure 3. ROC curve of the trained classifier using (A) network resilience and (B) network connectivity for schizophrenia
(purple line), bipolar disorder (blue line), and healthy controls (cyan line) as the positive class. The ensemble model was the
most optimal for both the 115 values of normalized global efficiency using resilience analysis and the 115 values of intra-
and inter-network connectivity using independent component analysis. The classification performance for the features from
network resilience provided higher sensitivity, specificity (> 0.7), and areas under the curve (> 0.9) for all three groups than
@at for the features from network connectivity.
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Network Robustness from the Resilience

Estimation

Comparisons

The mean absolute errors between network resilience curves of SZ,
BD, HC (Figure 4A) and that of Erdés—Rényi random network were
0.0417, 0.0431, and 0.0498, respectively. Hence, compared with the
BD and HC groups, the result of an attack on patients with SZ was
more robust and more similar to the performance of random networks,
which suggests a closer similarity between a random network and the
topology of the brain network in SZ. As the red asterisks indicate
in Figure 4, the normalized global efficiency with 88.8%, 94.0%,
and 94.8% targeted elimination of nodes was significantly different
across the three groups with FDR correction (q< 0.05). According to

the results of the post-hoc test, the elimination of SZ was significantly
higher than that of the other groups at 88.8% and that of BD was
significantly lower than those of the other groups with 94.0% and
94.8% eliminations. After network attacked, the connection of the
remaining cluster of brain regions was more highly clustered in SZ
group than the other two groups (Figure 4B). Hence, the network
of SZ group remained high efficiency. The clustering coefficients of
SZ, BD, HC groups were 0.63, 0.55, 0.55, respectively, in the 88.8%
attacked network, were 0.64, 0.40, 0.56, respectively, in the 94.0%
attacked network, and were 0.48, 0.45, 0.39, respectively, in the
94.8% attacked network.

-

Figure 4. Network resilience of schizophrenia (SZ; purple line), bipolar disorder (BD; blue line), healthy control (HC;
green line), and Erdos—Rényi random network (yellow line). (A) The normalized global efficiency of each group
changed with increasing proportions of targeted elimination on nodes. During the targeted attack, the brain regions
were eliminated in descending order of betweenness centrality, one region at a time. Once an additional region was
eliminated, the normalized global efficiency of all the networks was recalculated. The normalized global efficiency was
computed by dividing the global efficiency of the residual network by the global efficiency of the unattacked network.
Red asterisks indicate significant differences in normalized global efficiency between the three groups using analysis of
variance with false discovery rate correction (¢g< 0.05). (B) The glass brain illustrates the connectivity after eliminating
K88.8% of nodes in the networks of SZ, BD, and HC, and the random network. j

~

Estimation of Brain Network Properties

Regarding the results of the network property analysis, after
thresholding, the average connection densities of the SZ, BD, and
HC groups were all 0.41. Hence, the number of vertices and edges

of the simulated Erdos—Rényi random network were set to 116 and
23, respectively, generating adjacency matrices with connection
densities of 0.40. As Figure 5 shows, both the values of small-
worldness (SW) and global efficiency (GE) were not significantly
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different between the three groups (F(2,154) = 1.95, p-value =
0.145; F (2,154) = 0.70, p-value = 0.499). The functional networks
of all three groups exhibited small-world topologies because the
clustering coefficients of the three groups were larger than matched
random networks; furthermore, the characteristic path lengths of
all groups were identical to random networks. The mean (standard
deviation) small-worldness in the SZ, BD, and HC groups were 1.33
(0.044), 1.31 (0.038), and 1.33 (0.043), respectively.

The betweenness centrality of every single 116 regions according to
the automatic anatomical labeling template was compared across SZ,

BD, and HC. There was no significant difference after FDR (¢g<
0.05) correction. Table 5 demonstrates differences in betweenness
centrality with uncorrected p-value. In the Bonferroni post-hoc test,
aberrant betweenness centrality compared with HCs in the right
Rolandic operculum was in both SZ and BD. In addition, compared
with HCs, patients with SZ exhibited abnormal centrality in the
frontal operculum, superior occipital gyrus and cerebellar lobule 8.
Patients with BD exhibited abnormal centrality in cerebellar lobules
IV, V and cerebellar lobule VIIB. Patients with SZ and BD showed
different centralities in the frontal operculum and precuneus.

-

Figure 5. Boxplot of the small-worldness and global efficiency of the three groups, which were used to show global
patterns of network topology. Both of these properties exhibited no significant differences between the three groups (p>
Q.OS). SZ: schizophrenia; BD: bipolar disorder; HC: healthy control.

~

/ Regions Sz BD HC ANOVA
Mean = SD Mean + SD Mean + SD F, s p-value
Left inferior frontal gyrus 0.0050 + 0.00202 0.0060 £ 0.00212 | 0.0064 £ 0.00252 | 6.2666 0.0024%¢
(operculum)
Right Rolandic operculum 0.0074 + 0.00213 0.0070 £ 0.00227 | 0.0059 + 0.00195 |6.7724 0.0015
Left insula 0.0076 + 0.00243 0.0085 £ 0.00277 |0.0073 £+ 0.00227 |3.1190 0.0470
Left hippocampus 0.0052 + 0.00240 0.0052 £+ 0.00218 | 0.0042 + 0.00216 |[3.4321 0.0348
Left superior occipital gyrus 0.0047 + 0.00247 0.0052 £ 0.00225 | 0.0060 £ 0.00223 | 3.7369 0.0260*
Left precuneus 0.0056 + 0.00265 0.0044 + 0.00213 |0.0049 + 0.00170 |[4.0634 0.0191°
Left middle temporal pole 0.0053 + 0.00291 0.0040 £ 0.00225 | 0.0041 £ 0.00210 |4.6786 0.0107¢
Left cerebellar lobule IV, V 0.0075 + 0.00270 0.0063 £ 0.00245 |0.0078 + 0.00282 | 4.2553 0.0159°
Right cerebellar lobule VIIB | 0.0051 + 0.00238 0.0052 £ 0.00270 | 0.0040 £ 0.00207 |3.7270 0.0263°
Right cerebellar lobule VIII 0.0054 + 0.00235 0.0052 + 0.00223 |0.0043 + 0.00190 |[3.6411 0.0285°
Lobule VI of vermis 0.0056 + 0.00215 0.0052 £ 0.00207 |0.0064 <+ 0.00295 |3.2967 0.0396

Table 5. Different

-

etweenness centrality between schizophrenia, bipolar disorder, and healthy control

J

An ANOVA F-test without FDR correction was run for examining the differences in network connectivity between SZ, BD, and HC.

The results are showed with uncorrected p-value (p< 0.05).

*There was a significant difference between SZ and HC; ® there was a significant difference between BD and HC; © there was a
significant difference between SZ and BD (Bonferroni post hoc test).

SZ: schizophrenia; BD: bipolar disorder; HC: healthy control
Network Connectivity Comparisons

As Figure 6 shows, among the 903 intra- and inter-network
connections, the SZ and HC groups were significantly different with

more altered connections than did the BD and HC groups.
Additionally, as Table 6 shows, from the 35 mean correlations
between and within eight networks (excluding the intra-network
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connectivity of AN, which consisted only one component), the mean
correlation between SMN and ECN (SZ <BD <HC), ECN and DMN
(SZ>BD > HC), AN and cerebellum (SZ > HC > BD), subcortical
regions and cerebellum (SZ < BD < HC), and within subcortical
regions (SZ > BD > HC) were significantly different after ANOVA
with FDR (g< 0.05) correction. Greater aberration of themean

correlation was in SZ than in BD. The results of the Bonferroni
post-hoc test indicated that significant differences existed between
SZ and HC in SMN-ECN, ECN-DMN, and AN-cerebellum network
connectivity, as well as between SZ and BD in terms of AN-
cerebellum network connectivity.

-

~

Figure 6. The connectivity within and between the somatomotor network (SMN), visual network (Visual), executive
network (ECN), default-mode network (DMN), salience network (SN), auditory network (AN), subcortical regions
(Sub), and cerebellum (CB). (A) The intra- and inter-network connectivity of the three groups; the color bar represents
the z-score of the correlation. (B) The connections differed between the three groups according to an analysis of
variance corrected by false discovery rate (¢g< 0.05); the color bar represents the intensity of the p-value. (C) Left: The
connections with significantly increased connectivity in the patient groups compared with the control group using
Bonferroni post-hoc test. The altered connections of SZ are located in DMN-ECN, DMN-SMN, AN-cerebellum, and
visual-cerebellum, and those of BD are located in SN-visual, AN-visual, DMN-ECN, and DMN-visual. In addition,
hyperconnectivity within the network is exhibited in SMN with SZ > HC and SZ > BD > HC, as well as in ECN with
SZ > HC. Right: The connections with significantly decreased connectivity in the patient groups compared with in
the control group using Bonferroni post-hoc test. The altered connections of SZ are located in SN-DMN, SN-ECN,
and ECN-SMN, and those of BD are located in SMN-DMN, SN-ECN, and ECN-SMN.

(Network Sz BD HC ANOVA

Mean = SD Mean =+ SD Mean =+ SD F, . q-value
SMN - ECN -0.3429 + 0.17334 |-0.2841 + 0.13342 -0.2180 =+ 0.14581 | 8.8479 0.0036°
SMN — Cerebellum | 0.1261 £+ 0.23494 | -0.0014 =+ 0.19094 -0.0005 + 0.22617 | 6.0857 0.0164
ECN - DMN 0.2862 £ 0.20459 |0.2133 + 0.14906 0.1516 + 0.18479 |7.2873 0.0099a
AN — cerebellum -0.0490 + 0.29707 |-0.4017 =+ 0.35673 -0.2931 £ 0.36589 | 15.2335 | <0.0001*¢
SUB — cerebellum 0.1188 + 0.23785 |0.1324 + 0.25745 0.2684 £ 0.22312 | 6.1058 0.0164
SUB - SUB 0.5776 £ 0.34657 | 0.4579 + 0.26880 03705 £ 0.27964 | 6.3059 0.0164

-

Table 6. Different mean network connectivity between schizophrenia, bipolar disorder, and healthy control j

An ANOVA F-test with FDR correction was run for examining the differences in network connectivity between SZ, BD, and HC.
The results are showed with corrected g-value (q< 0.05).

“There was a significant difference between SZ and HC; ® there was a significant difference between BD and HC; © there was a
significant difference between SZ and BD (Bonferroni post hoc test).

SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; SMN: somatomotor network; ECN: executive network; DMN:
default-mode network; SN: salience network; AN: auditory network; SUB: subcortical regions.
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Discussion

We demonstrated that region-based network resilience can be a
powerful marker for classifying SZ and BD, two similar psychiatric
disorders. The region-based network robustness of the SZ group
and the random network were more similar than that of the BD and
HC groups, which indicated more disrupted hub connectivity in SZ.
Furthermore, patients with SZ showed more pervasive dysconnectivity
than did patients with BD. Widespread dysconnectivity and aberrant
hub connectivity may lead to the successful classification of these
two neuropsychiatric disorders using global features rather than
local properties, namely the functional connectivity of specific
brain regions or networks. Thus, region-based network resilience
outperformed intra- and inter-network connectivity and AAL-based
functional connectivity in classifying the two disorders and HCs.

Brain Network Resilience as a Potential Indicator for Classifying
SZ and BD

Region-based network resilience reflected the topology of the
brain network, and as relevant studies have demonstrated, the brain
network of SZ and random network showed closer similarity in
network resilience [17]. When we simulated a targeted attack on
brain regions in the descending order of betweenness centrality
through resilience analysis, removing nodes caused brain networks
to become more fragmented if there was apparent hub connectivity
in the networks. Because the topology of hub connectivity is more
disrupted in SZ than in BD, resilience analysis could be used as a
tool with great accuracy, high sensitivities (0.83 in SZ and 0.82 in
BD) and specificities (0.90 in SZ and 0.90 in BD) for differentiating
SZ from BD.

The significantly reduced connectivity of central hubs in patients
with SZ have been found to imply a reorganization of network
topology [20, 21]; however, BD has been shown to involveless
disruption in hub connectivity [22, 44]. Both SZ and BD exhibited
altered segregation and integration [45]; however, the degree of
randomization was also higher in SZ than in BD [46]. Brain network
organization in SZ was typically found to be less dominated by
hubs and less hierarchically connected because of the topological
decentralization of affected hubs. The structural and functional
abnormalities in patients with SZ were preferentially located in hubs
[20, 21]. The results of the present study demonstrated significantly
increased centrality in the left frontal operculum and decreased
centrality in the right Rolandic operculum in SZ compared with
the other two groups. Alterations in these two main subdivisions of
the insular-opercular system supported the correlation with chronic
hallucinations in SZ or nonclinical psychosis [47], which may result
from the role of the frontal operculum in internal speech and the role
of the Rolandic operculum in sensory-auditory integration [48, 49].

Superior Classification Performance Using Global Properties

Altered global connectivity is more characteristic of SZ. The
dysconnectivity of neuropsychiatric disorders suggests that
psychotic illnesses result not from regionally specific focal
pathophysiology in the brain but rather from abnormal integration
between neuroanatomical regions [50]. When the focus was on the
dysconnectivity of focal brain regions, classification was inferior
because patients might have shown widespread contributions and
lacked marked regions [51]. The lower classification performance
of network connectivity and AAL-based functional connectivity
features may have resulted from both overlapping and distinctive
connectivity across SZ and BD being found. The aberrant centrality
in SZ and BD was found in distinct brain regions as well as in diverse
networks. Thus, although dysconnectivity was not as prominent in
the BD group as it was in the SZ group, which was consistent with
previous studies [9, 52], network connectivity was unsuitable for
differentiating the two disorders.

Moreover, previous studies also showed inconsistent results in
distinguishing abnormalities between SZ and BD. Patients with BD

have exhibited it in meso- and para-limbic regions, which was more
focal than in SZ [53]; patients with SZ have exhibited pervasive
dysconnectivity of structural and functional connectivities [1, 3, 54-
61]. In addition, some studies have indicated that the differentiating
marker may be located in sensory regions [44, 46]. However, some
studies have still indicated that there was no disease-specific network
or compensatory region, which could be elucidated by the fact that
the two disorders have several common clinical symptoms; there is
the continuum of neural abnormalities across the two disorders [44,
62]. They have exhibited similar dysfunction in cortico-thalamic
circuits [63, 64], callosal and frontotemporal circuits [61], and the
frontoparietal control network [65]. Skatun et al. [44] also indicated
that both patients with SZ and BD showed decreased centrality in
limbic structures and increased centrality in frontal and parietal
regions.

Brain Network Resilience as a Robust Feature to Heterogeneity
of SZ and BD

The network properties within groups showed high heterogeneity,
but region-based network resilience can have robust features for
classifying SZ and BD. Differences in small-worldness across the
three groups were nonsignificant, which may have resulted from
heterogeneity (see Figure 5). The lower classification performance of
network connectivity and AAL-based functional connectivity features
may have also resulted from high individual variations, since that
the heterogeneity of neuropsychiatric disorders has been shown in
relevant studies [2, 20, 65, 66]. Suo et al. [45] systematically reviewed
the brain network architecture of neuropsychiatric disorders by using
network properties and reported that studies have shown inconsistent
alterations in network topology. In addition, the lower classification
performance of resilience computed from gICA network connectivity
may result from large individual variations in normalized global
efficiency of residual network connectivity after network removal.
Consequently, classification using network resilience is superior to
that using each network connectivity demonstrated in the present
study. The results indicated that the global feature of network
robustness was a more compelling feature than was focal functional
network connectivity, because the topological information may
diminish the influence of individual variations.

Limitations

The present study has some limitations. First, all participants had
received antipsychotic treatment for a long time. Long-term treatment
with antipsychotic medication was found to affect changes in the
brain that may result from the disease. In the present study, there
were no significant correlations between disease duration and mean
network connectivity or between disease duration and normalized
global efficiency. However, it was still difficult to exclude all the
effects of treatment. All patients recruited were not naive. Second,
group ICA was conducted for the HC group but not for the HCs
who were independent of three-group comparisons. However,
intrinsic connectivity networks decomposed in the present study
were consistent with those reported in other studies. Third, the static
functional connectivity analysis in the present study, which averages
over the entire acquisition time, is believed to overlook variable
brain activity during the acquisition period [67, 68]. However,
whether brain network properties are influenced by variations in the
acquisition period remains unclear. In the future, we may compare
features extracted by static functional connectivity and dynamic
functional connectivity.

Conclusion

We proposed a novel approach, resilience, to classify patients with
SZ and BD as well as HCs. Classification of the two neuropsychiatric
disorders using resilience analysis had higher accuracy for two main
reasons. First, resilience analysis provides an approach to detect
the topological structure of brain networks. Brain networks have
distributions that are more heterogeneous than those of random
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networks because the topology of hub connectivity plays a crucial
role in small-world networks and hierarchical organization. Second,
the classification performance by global properties was superior to
that by local ones, because patients with SZ and BD have distinct
and shared network dysconnectivity and have heterogeneous
presentations. The use of global change in brain network organization,
such as global efficiency after a targeted attack, may result in more
accurate classification than the use of local changes, such as region-
to-region functional connectivity. Consequently, network resilience
may be a tool for classifying SZ and BD and may help their diagnosis
in the future.
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