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Abstract
  Schizophrenia and bipolar disorder are difficult to differentiate 
without multiple clinical visits. Few studies have achieved successful 
differentiation. To accurately classify these two disorders, the present 
study used network resilience to generate features because of its 
ability to reflect the topology of a functional network. We recruited 
56 patients with schizophrenia, 51 patients with bipolar disorder, and 
50 healthy controls who were separated into training and testing sets. 
To compare the classification performance of network resilience, 
we used intra- and inter-network connectivity by computing the 
correlation of the same or different networks, decomposed through 
independent component analysis. Results indicated that the 
classification performance of network resilience outperformed that of 
network connectivity (accuracy: 0.81 > 0.63 for the training set; 0.80 
> 0.31 for the testing set). The network resilience of schizophrenia 
had a closer similarity to a random network, because schizophrenia 
demonstrates disruption in central hubs, which are regions with many 
connections. The superior classification performance of network 
resilience may be the result of more pervasive dysconnectivity and 
more disrupted hub connectivity in schizophrenia than in bipolar 
disorder. Moreover, large variations in schizophrenia may inhibit 
the classification performance of network connectivity. Therefore, 
network resilience can be a compelling marker for differentiating the 
neuropsychiatric disorders of schizophrenia and bipolar disorder.
Keywords: Classification, Schizophrenia, Bipolar Disorder, Network 
Resilience, Hubs, Machine Learning.
Introduction
   Schizophrenia (SZ) and bipolar disorder (BD) are two common 
neuropsychiatric disorders. SZ is a psychotic disorder characterized 
by extensive impairments in thought, attention, affect, and motor 
performance [1-3]. The diverse symptoms of SZ can result from 
aberrant interactions or the integration of distributed brain regions;

therefore, SZ is also regarded as a misconnection syndrome [2]. BD 
is characterized by episodic fluctuations in mood when the activity 
and connectivity of brain regions that mediate emotional regulation 
are disrupted [4-6]. These two neuropsychiatric disorders have been 
found to have distinguishable and multifaceted abnormalities [7]. 
However, differentiating between SZ and BDis difficult without 
multiple clinical visits [8] because they share apparent clinical 
symptoms, genetic risk mechanisms, and neurocognitive dysfunction 
[9].
   To distinguish SZ from BD, the resilience of brain networks may 
be a potential marker. Resilience analysis has been used to measure 
the robustness of the effects of brain lesions by using simulated 
attacks. This analysis is conducted by removing regions and their 
connections according to specific targeted properties [10-13]. 
Random networks, in which the majority of nodes have a similar 
number of connections, are highly resilient to damage. However, 
brain networks (small-world networks) are more vulnerable in scant 
brain regions with many connections, which are referred to as hubs. 
Hence, the architecture of small-world networks fragments rapidly 
in response to damage [10, 14, 15]. Because resilience analysis can 
reflect the architecture of the human brain network, it has also been 
used in research into neuropsychiatric diseases and aging [16-19]. 
Lo et al. [17] found that the global efficiency of patients with SZ and 
their siblings was degraded more severely by targeted attacks than 
was that of healthy control (HC) subjects, indicating that topological 
abnormalities of functional networks were evident not only in patients 
with SZ but also in their nonpsychotic relatives. Targeted attacks on 
connectivity hubs were especially likely to degrade global properties 
of small-world networks, such as global efficiency. Therefore, in the 
present study, we targeted betweenness centrality for measuring hub 
connectivity and global efficiency as a response to attacks.
   Because the organization of hub connectivity has been found to be 

we hypothesized that resilience analysis provides a novel approach
more aberrant in patients with SZ than in those with BD [13, 21, 22],
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to classify these two highly similar neuropsychiatric disorders. 
Furthermore, we hypothesized that resilience analysis has the 
potential to be a robust and reliable differentiation tool for diagnosis. 
The aim of this study was to explore whether differences in the global 
characteristics of brain functional networks between SZ and BD can 
be used in diagnosis using resilience analysis.
Materials and Methods
Participants
   A total of 56 patients with SZ, 51 patients with BD type I, and 50 
HCs were recruited. The SZ and BD groups included both outpatients 
and inpatients at Taipei Veterans General Hospital, Taiwan. 
Patients’ diagnoses were confirmed according to the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition on the 
basis of structured clinical interviews. The Positive and Negative 
Syndrome Scale (PANSS) was used to measure patients’ symptom 
severity [23]. Approximately 57% of patients with BD had been 
classified as psychotic during one or more illness episodes. Potential 
participants were excluded if they had substance abuse history or 
dependence during the previous 6 months or history of head injuries 
with documented sustained loss of consciousness, neurological 
sequelae, or both. The investigation was conducted according to 
the latest version of the Declaration of Helsinki. All participants 
provided written informed consent prior to their participation and 
after the procedures had been fully explained. The present study 
was approved by the Research Ethics Committee of Taipei Veterans 
General Hospital.
Resting-State Functional and Structural Magnetic Resonance 
Imaging
   Scanning was conducted at the Taipei Veterans General Hospital by 
using a 3.0-T GE magnetic resonance imaging (MRI) scanner (GE 
Healthcare Life Sciences, Little Chalfont, UK) with a quadrature 
head coil. Subjects’ heads were immobilized with a vacuum-beam 
pad inside the scanner. All participants wore earplugs to muffle the 
noise. Resting-state functional images were obtained using a T2*-
weighted gradient-echo, echo-planar sequence (repetition time [TR] 
= 2500 ms, echo time [TE] = 30 ms, flip angle [FA] = 90 degrees, 
and voxel size = 3.5 × 3.5 × 3.5 mm). A total of 200 MRI volumes 
of each subject were obtained with their eyes closed. A functional 
whole-brain image volume was composed of 43 interleaved 
horizontal slices, which were parallel to the intercommissural plane. 
Furthermore, anatomical whole-brain image volumes were obtained 
using a sagittal magnetization-prepared rapid acquisition gradient-
echo three-dimensional T1-weighted sequence (TR = 2530 ms, TE 
= 3 ms, echo spacing = 7.25 ms, FA = 7 degrees, field of view = 
256 × 256 mm, voxel size = 1 × 1 × 1 mm) for more efficient spatial 
registration and localization of activity, as well as to further correct 
for anatomical differences that might affect the interpretation of the 
functional analysis.
Preprocessing for Resting-State Functional MRI
   Imaging data were preprocessed using DPABI (http://rfmri.org/
DPABI) according to the following steps: (1) slice-dependent time 
shifts were compensated for; (2) the initial eight volumes were 
excluded; (3) head motion was corrected for and participants with 
head motion larger than 3 mm or 3° were discarded; (4) functional 
imaging volumes were coregistered with their own anatomical images; 
(5) spatial normalization into the Montreal Neurological Institute 
space was performed using a nonlinear warping algorithm; and (6) 
smoothing was conducted using a 6-mm full-width half-maximum 
Gaussian kernel. After smoothing, spurious data were removed 
using a regression model containing the six parameters obtained 
using rigid-body affine transformation during preprocessing, the 
mean whole-brain signal, the mean signal from the lateral ventricles, 
and the mean signal within a deep-white-matter region of interest. 
Subsequently, band-pass filtering from 0.01 to 0.08 Hz was applied 
to the imaging data.
Functional Connectivity Analysis
   Functional connectivity was conducted by parcellating the whole

brain into 116 regions according to the automatic anatomical labeling 
template [24]; this template is widely used and demonstrates small-
world topology and resilience [10]. The correlation between each 
pair of regional time series of the 116 regions was examined using 
Pearson’s correlation coefficient and then converted using Fisher’s 
r-to-z transformation [25]. Consequently, functional networks for 
each patient were obtained as a 116 × 116 normalized, symmetric 
correlation matrices. The absolute values of correlation matrix 
elements were analyzed using one-sample t-tests, and values less 
than the lower bound of the 99.9% confidence interval (CI) were 
removed. The threshold was based on individual significance 
levels for discarding spurious connections [26, 27]. Subsequently, a 
binary adjacency matrix was generated by converting the remaining 
absolute z-values to 1 and the others (including diagonal elements) 
to 0. Graph theory and resilience analyses were performed on these 
nonzero, binary adjacency matrices.
Graph Theory and Resilience Analyses
   The topological properties of brain networks were quantified 
using a theoretical graph analysis, which uses a graph to provide an 
abstract representation of a small-world system’s elements and their 
interactions [28]. The small-world topology and hierarchy of brain 
networks were evaluated by calculating the small-worldness and 
betweenness centrality, respectively. Compared with an Erdös–Rényi 
random network, the clustering coefficient of a small-world network 
is higher but their characteristic path lengths are nearly equal. 
The characteristic path length (L)refers to the minimum number 
of connections between one region of the brain and another. The 
clustering coefficient (Cl) quantifies the proportion of connections 
that exist between the neighbors nearest to a brain region and was 
obtained as follows:

where ki is the number of connections between node i and other nodes 
and ti is the number of triangles attached to node i. Subsequently, the 
value of small-worldness (sw) was calculated using

where ClR and LR are the clustering coefficient and characteristic path 
length of the random network, respectively. Betweenness centrality 
is a measure of the number of shortest paths between all other node 
pairs in the network passing through it. Brain regions with high 
centrality are crucial for efficient communication. To compute the 
betweenness centrality of a node i, the proportion of the shortest 
paths between nodes j and h that pass through I were obtained using

where ρhj(i) is the number of the shortest paths between nodes j and 
h that pass through I;ρhj is the number of the shortest paths between 
j and h; and (N−1)(N−2) is the number of node pairs that does not 
include node i. Furthermore, for further resilience analysis, global 
efficiency, which is the reciprocal of the average of the shortest path 
length between all possible pairs of nodes, was calculated to measure 
the integration and efficiency of the global network.

where lij is the shortest path length from node j to node i. The values 
of small-worldness and global efficiency in the three groups were 
also compared using one-way ANOVA.
   To assess the resilience of a brain network, we used betweenness
centrality as the target for a targeted attack by deleting one brain
region at a time in descending order of betweenness centrality. After 
each brain region was deleted, the global efficiency of residual 
brain regions was divided by the global efficiency of the original 
brain network prior to the attack to compute the normalized global  
efficiency. The process was repeated until only the last cluster in the 
residual network remained. In addition, targeted elimination of nodes 
in the random network with the same mean connection density was 
computed for comparison.
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Independent Component Analysis
   Next, a group-level temporal concatenation independent component 
analysis (group ICA) was performed from the preprocessed imaging 
data of the HC group to extract group representative large-scale 
networks by implementing FSL’s Multivariate Exploratory Linear 
Optimized Decomposition into Components (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/MELODIC) version 3.0. Such brain network 
decompositions allow for a simultaneous separation into spatially 
and maximally independent resting-state networks for the whole 
brain. The 75 independent components (ICs) were decomposed 
because the high-order ICA has been demonstrated to correspond to 
known anatomical and functional segmentations [29, 30]. The ICs 
were created to allow for the adequate modeling of both resting-
state networks and artifacts, including noise and physiological 
signals [31]. A threshold level of 0.5 was set for IC maps. To extract 
putative intrinsic networks (INs), ICs were evaluated by detecting 
peak activations in the gray matter; a low spatial overlap with known 
vascular, ventricular, motion, and susceptibility artifacts; and time 
courses dominated by low-frequency fluctuations [32, 33]. Each IN 
was classified according to relevant studies [33-36]. Subsequently, 
regression-based back-reconstruction was performed to produce 
specific time courses of each subject’s intrinsic functional brain 
network. Next, the intra- and inter-network connectivity were calculated 
through a cross-correlation between the time courses of pairwise 
components by using Pearson’s correlation coefficient. Fisher’s 
r-to-z transformation was used to normalize correlation coefficients 
into z-scores. Furthermore, the average network connectivity 
between and within specific networks and differences among the 
three groups were computed. In addition, to better realize the effect 
of resilience analysis, graph theory and resilience analysis was also
implemented on the connectivity of intrinsic networks, referring to as 
the resilience of gICA network connectivity.

Classifier Selection and Feature Extraction for the Classification
   The present study evaluated the classification performance of 
the classifier for network resilience as well as for the intra- and 
inter-network connectivity. We used several well-known linear and 
nonlinear classifiers, including the decision tree [37], support vector 
machine (SVM) [38], k-nearest neighbor (KNN) [39], and ensemble 
[40] models. All the classifiers used MATLAB (version 2017b; 
Math Works, Inc., Natick, MA, USA). This study separately used 
the classifiers with the greatest accuracy for features extracted from 
resilience and network connectivity.
   The participants in each group were randomly separated into 
a training set and a testing set. Each training set consisted of 
approximately two-thirds of each group (38 participants in the SZ 
group, 34 in the BD group, and 34 in the HC group). To balance 
the number of features extracted from resilience and network 
connectivity, we selected consistent and reliable features of network 
connectivity by using minimum-redundancy maximum-relevance 
(mRMR) feature selection from the three groups [41]. The first 115 
reliable intra- and inter-network connectivities were chosen for the 
classifier. The resilience and the network connectivity were separately 
used to train the classifiers by ten-fold cross-validation. Moreover, 
in repeated cross-validations, the model from resilience and from 
network connectivity were each retrained 100 times with randomly 
selected training samples for each group to ensure the robustness 
of the trained model. The testing sample included the remainder of 
the participants (18in the SZ group, 17 in the BD group, and 16 in 
the HC group). The accuracies, sensitivities, and specificities of the 
training and testing samples of the most optimal trained model were 
used to compare the classification performance of these two types of 
feature. The process of feature extraction and classifier selection for 
the classification is showed in Figure 1.

Figure 1. Overview of the classification process. After preprocessing resting-state functional 
magnetic imaging data, two approaches to feature extraction were used: group independent 
component analysis (ICA) and resilience analysis. The resting-state data of healthy controls were 
decomposed into 75 components; then, the back-reconstruction method was used to estimate the 
spatial maps and time courses of all participants. Time courses of 43 components, which were 
identified as intrinsic connectivity networks, were used to compute the intra- and inter-network 
connectivity. Minimum-redundancy maximum-relevance feature selection was used to select 115 
features from a total of 903 connections. Then, 115 normalized global efficiencies were classified 
after targeted elimination, and 115 intra- and inter-network connections were trained separately 
to select the optimal classifier.
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Statistical Analyses
   Differences across the SZ, BD, and HC groups in terms of network 
resilience after each targeted attack and intra- and inter-network 
connectivity were assessed using one-way analysis of variance 
(ANOVA) with multiple comparisons corrected for and the false 
discovery rate (FDR) correction (q< 0.05) applied [42]; subsequently, 
Bonferroni post-hoc tests were also used [43].
Results
   According to the demographic data, no significant differences 
existed in terms of age or sex across the three groups as well as 
in terms of age at onset between the two patient groups (Table 1). 
However, significant differences were observed in terms of duration, 
which could be the result of only patients with SZ being those in

a stable phase. The total PANSS scores were significantly different 
between the SZ and BD groups (including 29 patients who had 
psychosis). Furthermore, the three groups did not differ significantly 
in terms of mean response time in the 1-back working memory test 
but differed significantly in terms of correct number in the same 
test as well as in mean response time and correct number in the 
2-back working memory test (p<0.05). Pairwise differences were 
investigated using Bonferroni post-hoc analysis, and results showed 
that significant differences existed between the SZ and HC groups 
as well as between the BD and HC groups. This indicated that both 
the SZ and BD groups had poorer working memory than did the HC 
group, especially in the more difficult task; however, the two patient 
groups showed no significant difference.

SZ BD HC p-value
Sample size 56 51 50
Age (years) 32.8  ±  9.19 34.8  ± 10.46 32.5  ±  8.56 0.418
Gender 0.954
Male, N(%) 28  (50.0%) 25  (49.0%) 26  (52.0%)
Female, N(%) 28  (50.0%) 26  (51.0%) 24  (48.0%)
Onset age 24.7  ±  7.54 23.2  ±  9.43 0.369
Duration  8.2  ±  6.77 11.4  ±  8.47 0.036

PANSS 61.0  ±  12.37 39.8  ±  16.72 <0.001

Psychosis, N(%) 29 (56.9%)
Antipsychotics 
(chloropromazine 
equivalent)

323.3  ±  174.31 216.6  ±  202.53

Mood stabilizer, N(%) 47  (92.2%)
Working memory (1-back)
Mean (ms) 626.5  ±  148.65 669.4  ±  252.17 559.6  ±  127.12 0.061
Correct (N)   13.8  ±  1.79   14.2  ±  1.50   14.9  ±  0.32 0.002a,b

Working memory (2-back)
Mean (ms) 856.2  ±  171.07 827.6  ±  256.30 640.3  ±  167.20 <0.001a,b

Correct (N) 10.1  ±  3.87   11.6  ±  3.53   13.4  ±  2.27 <0.001a

aThere was a significant difference between SZ and HC; b there was a significant difference between 
BD and HC.
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control

Tables 1: Demographic data

Features from the Resilience Analysis
   For each participant, 115 values existed for normalized global 
efficiency until the last cluster remained. These 115 values were then 
used as features to train the classification model for the resilience 
analysis.
Features from Intra- and Inter-Network Connectivity
   After artifactual ICs were removed, 43 components remained, 
which generated 903 connections of pairwise components. As 
Figure 2 shows, these networks were classified into the somatomotor 
network (SMN), visual network, executive network (ECN), default-
mode network (DMN), salience network (SN), auditory network 
(AN), subcortical regions (SUB), and cerebellum (CB). Based on 
the network that each component belonged to, the intra- and inter-
network connectivity in each of the three groups were estimated, 
and 115 connections were selected among the 903 connections using 
mRMR.
Classification Performance
   Because there are individual variations in the network properties 
within each group, we adopted the group order of betweenness 
centrality and removed the nodes one by one to re-compute the global
efficiency as features. The same order was applied for testing samples 
too. The most optimal model was determined to be the ensemble 
model (subspace discriminant) for both resilience and network 
connectivity. As shown in Table 2, both overall accuracies [95% CIs] 

for classifying the training and testing samples on features extracted 
using resilience analysis (81.13% [88.58%, 73.68%] and 80.39% 
[91.29%, 69.49%]) were higher than those extracted using intra- 
and inter-network connectivity (63.21% [72.39%, 54.03%] and 
31.37% [44.10%, 18.64%]). The p-values of the proportion test 
for training and testing accuracies from the two feature extraction 
approaches were 0.004 and <0.001, respectively, indicating a 
significant difference between resilience and network connectivity 
features. The sensitivities, specificities, and areas under the ROC 
curve (AUCs) for the model of resilience were all superior to that of 
network connectivity (Table 2 and Figure 3). Both the AUCs for the 
models from resilience and network connectivity were as follows: 
HC > SZ > BD. In addition, the classification performance of 
resilience was also compared with functional connectivity in which 
the respective features derived from the same parcellation, namely, 
AAL. The initial features for the functional connectivity derived 
from AAL parcellation were 6670 connections in total, which were 
in turn selected by mRMR and reduced to 115 connections. The 
classification results of using functional connectivity as features 
showed that the overall accuracies [95% CIs] for classifying the 
training and testing samples were 61.32% [70.59%, 52.05%] and 
29.41% [41.92%, 16.91%], respectively (Table 2). The p-values of 
the proportion test were 0.001 and <0.001 for training and testing 
samples, respectively. Therefore, even using the same parcellation, 
the classification performance of resilience was still superior to 
that of functional connectivity. Moreover, Table 3 indicated the
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classification performance with the features extracted from the 
resilience and connectivity of intrinsic networks with the same 
number of features. For the training samples, the results exhibited that 
the  overall accuracies [95% confidence intervals] for resilience and 
network connectivity were 53.77% [63.27%, 44.28%] and 66.04%
[75.05%, 57.02%], respectively; for the testing samples, were 37.25%
[50.52%, 23.99%] and 35.29% [48.41%, 22.18%], respectively. The

p-values of proportion test for the training and testing samples were 
0.068 and 0.837, respectively. Accordingly, the difference between 
the classification performance of resilience and that of network 
connectivity was insignificant. In addition, Table 4 demonstrated 
the average of means and standard deviations of all features for the 
classification. All types of features except the resilience of AAL-
based functional connectivity had high standard deviation.

                Predicted
                        class
True class

Confusion matrix 

SZ	 BD	 HC Sensitivity Specificity
Accuracy(%)
[95% CI]

Proportion test 
with resilience 
analysis (p-value)

Resilience
Training
       SZ (n=38) 32 4 2 0.84 0.90

81.13
[88.58,73.68]

       BD (n=34) 4 26 4 0.76 0.88
      HC (n=34) 2 4 28 0.82 0.91
Testing

      SZ (n=18) 15 1 2 0.83 0.90
80.39
[91.29, 69.49]

      BD (n=17) 1 14 2 0.82 0.90
      HC (n=16) 2 2 12 0.75 0.88
Network connectivity
Training
        SZ (n=38) 22 9 7 0.58 0.76

63.21
[72.39, 54.03]

0.004        BD (n=34) 7 22 5 0.65 0.78
        HC (n=34) 7 4 23 0.68 0.79
Testing
       SZ (n=18) 3 15 0 0.17 0.72

31.37
[44.10, 18.64]

< 0.001
       BD (n=17) 4 12 1 0.71 0.12

       HC (n=16) 1 14 1 0.06 0.94
Functional connectivity
Training
       SZ (n=38) 23 7 8 0.61 0.78

61.32
[70.59, 52.05]

0.001       BD (n=34) 7 20 7 0.59 0.76
        HC (n=34) 5 7 22 0.65 0.74
Testing
      SZ (n=18) 4 11 3 0.22 0.69

29.41
[41.92, 16.91]

< 0.001      BD (n=17) 4 5 8 0.29 0.33
     HC (n=16) 1 9 6 0.38 0.45

SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; CI: confidence interval.
Table 2. Ensemble (subspace discriminant) classification of resilience analysis, intra- and inter-network connectivity using 

independent component analysis (ICA), and functional connectivity measured by AAL parcellation

Figure 2. Thresholded spatial maps of 43 intrinsic connectivity networks were classified into eight networks. Each network is 
exemplified by one or two components.
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                    Predicted
                           class
True class

Confusion matrix

SZ	 BD	 HC
Sensitivity Specificity

Accuracy(%)
[95% CI]

Proportion test with 
resilience analysis 
(p-value)

Resilience
Training
       SZ (n=38) 21 12 5 0.55 0.68

53.77
[63.27, 44.28]

       BD (n=34) 11 16 7 0.47 0.67
      HC (n=34) 6 8 20 0.59 0.76

Testing

      SZ (n=18) 0 8 10 0 1
37.25
[50.52, 23.99]

      BD (n=17) 0 10 7 0.59 0.38
      HC (n=16) 0 7 9 0.56 0.37
Network connectivity
Training
        SZ (n=38) 26 8 4 0.68 0.81

66.04
[75.05, 57.02]

0.068        BD (n=34) 7 21 6 0.62 0.75
        HC (n=34) 3 8 23 0.68 0.82

Testing
       SZ (n=18) 4 10 4 0.22 0.61

35.29
[48.41, 22.18]

0.837
       BD (n=17) 4 12 1 0.71 0.24

       HC (n=16) 5 9 2 0.13 0.76
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; CI: confidence interval

Table 3. Ensemble (subspace discriminant) classification of resilience analysis, and intra- and inter-network connectivity 
both by using group independent component analysis (gICA)

AAL-based connectivity Network connectivity
SZ 0.062    ±     0.2366 -0.037   ±     0.2425
BD 0.079   ±     0.2105 -0.037   ±     0.2214
HC 0.101   ±     0.2248 -0.052   ±     0.2625

Resilience of AAL-based 
connectivity

Resilience of gICA network 
connectivity

     SZ 0.843   ±     0.0582 0.797   ±      0.1307
     BD 0.845   ±     0.0630 0.834   ±      0.1294

     HC 0.840   ±     0.0575 0.839   ±      0.1237
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; gICA: 
group independent component analysis.

Table 4. The average of features’ mean and standard deviation

Figure 3. ROC curve of the trained classifier using (A) network resilience and (B) network connectivity for schizophrenia 
(purple line), bipolar disorder (blue line), and healthy controls (cyan line) as the positive class. The ensemble model was the 
most optimal for both the 115 values of normalized global efficiency using resilience analysis and the 115 values of intra- 
and inter-network connectivity using independent component analysis. The classification performance for the features from 
network resilience provided higher sensitivity, specificity (> 0.7), and areas under the curve (> 0.9) for all three groups than 
that for the features from network connectivity.
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Network Robustness Comparisons from the Resilience 
Estimation
  The mean absolute errors between network resilience curves of SZ, 
BD, HC (Figure 4A) and that of Erdös–Rényi random network were 
0.0417, 0.0431, and 0.0498, respectively. Hence, compared with the 
BD and HC groups, the result of an attack on patients with SZ was 
more robust and more similar to the performance of random networks, 
which suggests a closer similarity between a random network and the 
topology of the brain network in SZ. As the red asterisks indicate 
in Figure 4, the normalized global efficiency with 88.8%, 94.0%, 
and 94.8% targeted elimination of nodes was significantly different 
across the three groups with FDR correction (q< 0.05). According to

the results of the post-hoc test, the elimination of SZ was significantly 
higher than that of the other groups at 88.8% and that of BD was 
significantly lower than those of the other groups with 94.0% and 
94.8% eliminations. After network attacked, the connection of the 
remaining cluster of brain regions was more highly clustered in SZ 
group than the other two groups (Figure 4B). Hence, the network 
of SZ group remained high efficiency. The clustering coefficients of 
SZ, BD, HC groups were 0.63, 0.55, 0.55, respectively, in the 88.8% 
attacked network, were 0.64, 0.40, 0.56, respectively, in the 94.0% 
attacked network, and were 0.48, 0.45, 0.39, respectively, in the 
94.8% attacked network.

Figure 4. Network resilience of schizophrenia (SZ; purple line), bipolar disorder (BD; blue line), healthy control (HC; 
green line), and Erdös–Rényi random network (yellow line). (A) The normalized global efficiency of each group 
changed with increasing proportions of targeted elimination on nodes. During the targeted attack, the brain regions 
were eliminated in descending order of betweenness centrality, one region at a time. Once an additional region was 
eliminated, the normalized global efficiency of all the networks was recalculated. The normalized global efficiency was 
computed by dividing the global efficiency of the residual network by the global efficiency of the unattacked network. 
Red asterisks indicate significant differences in normalized global efficiency between the three groups using analysis of 
variance with false discovery rate correction (q< 0.05). (B) The glass brain illustrates the connectivity after eliminating 
88.8% of nodes in the networks of SZ, BD, and HC, and the random network.

Estimation of Brain Network Properties
   Regarding the results of the network property analysis, after 
thresholding, the average connection densities of the SZ, BD, and 
HC groups were all 0.41. Hence, the number of vertices and edges

of the simulated Erdös–Rényi random network were set to 116 and 
23, respectively, generating adjacency matrices with connection 
densities of 0.40. As Figure 5 shows, both the values of small-
worldness (SW) and global efficiency (GE) were not significantly
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different between the three groups (FSW(2,154) = 1.95, p-value = 
0.145; FGE(2,154) = 0.70, p-value = 0.499). The functional networks 
of all three groups exhibited small-world topologies because the 
clustering coefficients of the three groups were larger than matched 
random networks; furthermore, the characteristic path lengths of 
all groups were identical to random networks. The mean (standard 
deviation) small-worldness in the SZ, BD, and HC groups were 1.33 
(0.044), 1.31 (0.038), and 1.33 (0.043), respectively.
   The betweenness centrality of every single 116 regions according to 
the automatic anatomical labeling template was compared across SZ, 

BD, and HC. There was no significant difference after FDR (q< 
0.05) correction. Table 5 demonstrates differences in betweenness 
centrality with uncorrected p-value. In the Bonferroni post-hoc test, 
aberrant betweenness centrality compared with HCs in the right 
Rolandic operculum was in both SZ and BD. In addition, compared 
with HCs, patients with SZ exhibited abnormal centrality in the 
frontal operculum, superior occipital gyrus and cerebellar lobule 8. 
Patients with BD exhibited abnormal centrality in cerebellar lobules 
IV, V and cerebellar lobule VIIB. Patients with SZ and BD showed 
different centralities in the frontal operculum and precuneus.

Figure 5. Boxplot of the small-worldness and global efficiency of the three groups, which were used to show global 
patterns of network topology. Both of these properties exhibited no significant differences between the three groups (p> 
0.05). SZ: schizophrenia; BD: bipolar disorder; HC: healthy control.

      Regions            SZ               BD            HC           ANOVA
Mean    ±   SD Mean	 ±     SD Mean	 ±   SD F2,154 p-value

Left inferior frontal gyrus 
(operculum)

0.0050   ±   0.00202 0.0060	 ±   0.00212 0.0064	 ±   0.00252 6.2666 0.0024a,c

Right Rolandic operculum 0.0074   ±   0.00213 0.0070	 ±    0.00227 0.0059	 ±   0.00195 6.7724 0.0015a,b

Left insula 0.0076   ±   0.00243 0.0085	 ±    0.00277 0.0073	 ±   0.00227 3.1190 0.0470
Left hippocampus 0.0052   ±   0.00240 0.0052	 ±    0.00218 0.0042	 ±   0.00216 3.4321 0.0348
Left superior occipital gyrus 0.0047   ±  0.00247 0.0052	 ±    0.00225 0.0060	 ±   0.00223 3.7369 0.0260a

Left precuneus 0.0056   ±   0.00265 0.0044	 ±    0.00213 0.0049	 ±   0.00170 4.0634 0.0191c

Left middle temporal pole 0.0053   ±   0.00291 0.0040	 ±    0.00225 0.0041	 ±   0.00210 4.6786 0.0107c

Left cerebellar lobule IV, V 0.0075   ±   0.00270 0.0063	 ±    0.00245 0.0078	 ±   0.00282 4.2553 0.0159b

Right cerebellar lobule VIIB 0.0051   ±   0.00238 0.0052	 ±    0.00270 0.0040	 ±   0.00207 3.7270 0.0263b

Right cerebellar lobule VIII 0.0054   ±   0.00235 0.0052	 ±    0.00223 0.0043	 ±   0.00190 3.6411 0.0285a

Lobule VI of vermis 0.0056   ±   0.00215 0.0052	 ±   0.00207 0.0064     ±    0.00295 3.2967 0.0396
Table 5. Different betweenness centrality between schizophrenia, bipolar disorder, and healthy control

An ANOVA F-test without FDR correction was run for examining the differences in network connectivity between SZ, BD, and HC. 
The results are showed with uncorrected p-value (p< 0.05).
aThere was a significant difference between SZ and HC; b there was a significant difference between BD and HC; c there was a 
significant difference between SZ and BD (Bonferroni post hoc test).
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control

Network Connectivity Comparisons
   As Figure 6 shows, among the 903 intra- and inter-network 
connections, the SZ and HC groups were significantly different with

more altered connections than did the BD and HC groups. 
Additionally, as Table 6 shows, from the 35 mean correlations 
between and within eight networks (excluding the intra-network
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connectivity of AN, which consisted only one component), the mean 
correlation between SMN and ECN (SZ < BD < HC), ECN and DMN 
(SZ > BD  > HC), AN and cerebellum (SZ > HC > BD), subcortical 
regions and cerebellum (SZ < BD < HC), and within subcortical 
regions (SZ > BD > HC) were significantly different after ANOVA 
with FDR (q< 0.05) correction. Greater aberration of themean 

correlation was in SZ than in BD. The results of the Bonferroni 
post-hoc test indicated that significant differences existed between 
SZ and HC in SMN-ECN, ECN-DMN, and AN-cerebellum network 
connectivity, as well as between SZ and BD in terms of AN-
cerebellum network connectivity.

Figure 6. The connectivity within and between the somatomotor network (SMN), visual network (Visual), executive 
network (ECN), default-mode network (DMN), salience network (SN), auditory network (AN), subcortical regions 
(Sub), and cerebellum (CB). (A) The intra- and inter-network connectivity of the three groups; the color bar represents 
the z-score of the correlation. (B) The connections differed between the three groups according to an analysis of 
variance corrected by false discovery rate (q< 0.05); the color bar represents the intensity of the p-value. (C) Left: The 
connections with significantly increased connectivity in the patient groups compared with the control group using 
Bonferroni post-hoc test. The altered connections of SZ are located in DMN-ECN, DMN-SMN, AN-cerebellum, and 
visual-cerebellum, and those of BD are located in SN-visual, AN-visual, DMN-ECN, and DMN-visual. In addition, 
hyperconnectivity within the network is exhibited in SMN with SZ > HC and SZ > BD > HC, as well as in ECN with 
SZ > HC. Right: The connections with significantly decreased connectivity in the patient groups compared with in 
the control group using Bonferroni post-hoc test. The altered connections of SZ are located in SN-DMN, SN-ECN, 

and ECN-SMN, and those of BD are located in SMN-DMN, SN-ECN, and ECN-SMN.

Network SZ BD HC ANOVA
Mean  ±  SD   Mean     ±    SD   Mean    ±   SD F2,154 q-value

SMN – ECN -0.3429	 ±   0.17334 -0.2841	 ±    0.13342 -0.2180	 ±   0.14581 8.8479 0.0036a

SMN – Cerebellum 0.1261	 ±   0.23494 -0.0014	 ±    0.19094 -0.0005	 ±   0.22617 6.0857 0.0164
ECN – DMN 0.2862	 ±   0.20459 0.2133	 ±    0.14906 0.1516	 ±   0.18479 7.2873 0.0099a
AN – cerebellum -0.0490	 ±   0.29707 -0.4017	 ±    0.35673 -0.2931	 ±   0.36589 15.2335 <0.0001a,c

SUB – cerebellum 0.1188	 ±   0.23785 0.1324	 ±    0.25745 0.2684	 ±   0.22312 6.1058 0.0164

SUB – SUB 0.5776	 ±   0.34657 0.4579	 ±    0.26880 0.3705	 ±   0.27964 6.3059 0.0164
Table 6. Different mean network connectivity between schizophrenia, bipolar disorder, and healthy control

An ANOVA F-test with FDR correction was run for examining the differences in network connectivity between SZ, BD, and HC. 
The results are showed with corrected q-value (q< 0.05).
aThere was a significant difference between SZ and HC; b there was a significant difference between BD and HC; c there was a 
significant difference between SZ and BD (Bonferroni post hoc test).
SZ: schizophrenia; BD: bipolar disorder; HC: healthy control; SMN: somatomotor network; ECN: executive network; DMN: 
default-mode network; SN: salience network; AN: auditory network; SUB: subcortical regions.



Page 10 of 13

 J Rehab Pract Res                                                                                                                                                     JRPR, an open access journal
Volume 6. 2025. 156                                                                                                                                                  ISSN 2581-3846

Discussion
   We demonstrated that region-based network resilience can be a 
powerful marker for classifying SZ and BD, two similar psychiatric 
disorders. The region-based network robustness of the SZ group 
and the random network were more similar than that of the BD and 
HC groups, which indicated more disrupted hub connectivity in SZ. 
Furthermore, patients with SZ showed more pervasive dysconnectivity 
than did patients with BD. Widespread dysconnectivity and aberrant 
hub connectivity may lead to the successful classification of these 
two neuropsychiatric disorders using global features rather than 
local properties, namely the functional connectivity of specific 
brain regions or networks. Thus, region-based network resilience 
outperformed intra- and inter-network connectivity and AAL-based 
functional connectivity in classifying the two disorders and HCs.
Brain Network Resilience as a Potential Indicator for Classifying 
SZ and BD 
   Region-based network resilience reflected the topology of the 
brain network, and as relevant studies have demonstrated, the brain 
network of SZ and random network showed closer similarity in 
network resilience [17]. When we simulated a targeted attack on 
brain regions in the descending order of betweenness centrality 
through resilience analysis, removing nodes caused brain networks 
to become more fragmented if there was apparent hub connectivity 
in the networks. Because the topology of hub connectivity is more 
disrupted in SZ than in BD, resilience analysis could be used as a 
tool with great accuracy, high sensitivities (0.83 in SZ and 0.82 in 
BD) and specificities (0.90 in SZ and 0.90 in BD) for differentiating 
SZ from BD.
   The significantly reduced connectivity of central hubs in patients 
with SZ have been found to imply a reorganization of network 
topology [20, 21]; however, BD has been shown to involveless 
disruption in hub connectivity [22, 44]. Both SZ and BD exhibited 
altered segregation and integration [45]; however, the degree of 
randomization was also higher in SZ than in BD [46]. Brain network 
organization in SZ was typically found to be less dominated by 
hubs and less hierarchically connected because of the topological 
decentralization of affected hubs. The structural and functional 
abnormalities in patients with SZ were preferentially located in hubs 
[20, 21]. The results of the present study demonstrated significantly 
increased centrality in the left frontal operculum and decreased 
centrality in the right Rolandic operculum in SZ compared with 
the other two groups. Alterations in these two main subdivisions of 
the insular-opercular system supported the correlation with chronic 
hallucinations in SZ or nonclinical psychosis [47], which may result 
from the role of the frontal operculum in internal speech and the role 
of the Rolandic operculum in sensory-auditory integration [48, 49].
Superior Classification Performance Using Global Properties
   Altered global connectivity is more characteristic of SZ. The 
dysconnectivity of neuropsychiatric disorders suggests that 
psychotic illnesses result not from regionally specific focal 
pathophysiology in the brain but rather from abnormal integration 
between neuroanatomical regions [50]. When the focus was on the 
dysconnectivity of focal brain regions, classification was inferior 
because patients might have shown widespread contributions and 
lacked marked regions [51]. The lower classification performance 
of network connectivity and AAL-based functional connectivity 
features may have resulted from both overlapping and distinctive 
connectivity across SZ and BD being found. The aberrant centrality 
in SZ and BD was found in distinct brain regions as well as in diverse 
networks. Thus, although dysconnectivity was not as prominent in 
the BD group as it was in the SZ group, which was consistent with 
previous studies [9, 52], network connectivity was unsuitable for 
differentiating the two disorders.
   Moreover, previous studies also showed inconsistent results in 
distinguishing abnormalities between SZ and BD. Patients with BD

have exhibited it in meso- and para-limbic regions, which was more 
focal than in SZ [53]; patients with SZ have exhibited pervasive 
dysconnectivity of structural and functional connectivities [1, 3, 54- 
61]. In addition, some studies have indicated that the differentiating 
marker may be located in sensory regions [44, 46]. However, some 
studies have still indicated that there was no disease-specific network 
or compensatory region, which could be elucidated by the fact that 
the two disorders have several common clinical symptoms; there is 
the continuum of neural abnormalities across the two disorders [44, 
62]. They have exhibited similar dysfunction in cortico-thalamic 
circuits [63, 64], callosal and frontotemporal circuits [61], and the 
frontoparietal control network [65]. Skatun et al. [44] also indicated 
that both patients with SZ and BD showed decreased centrality in 
limbic structures and increased centrality in frontal and parietal 
regions.
Brain Network Resilience as a Robust Feature to Heterogeneity 
of SZ and BD
   The network properties within groups showed high heterogeneity, 
but region-based network resilience can have robust features for 
classifying SZ and BD. Differences in small-worldness across the 
three groups were nonsignificant, which may have resulted from 
heterogeneity (see Figure 5). The lower classification performance of 
network connectivity and AAL-based functional connectivity features 
may have also resulted from high individual variations, since that 
the heterogeneity of neuropsychiatric disorders has been shown in 
relevant studies [2, 20, 65, 66]. Suo et al. [45] systematically reviewed 
the brain network architecture of neuropsychiatric disorders by using 
network properties and reported that studies have shown inconsistent 
alterations in network topology. In addition, the lower classification 
performance of resilience computed from gICA network connectivity 
may result from large individual variations in normalized global 
efficiency of residual network connectivity after network removal. 
Consequently, classification using network resilience is superior to 
that using each network connectivity demonstrated in the present 
study. The results indicated that the global feature of network 
robustness was a more compelling feature than was focal functional 
network connectivity, because the topological information may 
diminish the influence of individual variations.
Limitations
   The present study has some limitations. First, all participants had 
received antipsychotic treatment for a long time. Long-term treatment 
with antipsychotic medication was found to affect changes in the 
brain that may result from the disease. In the present study, there 
were no significant correlations between disease duration and mean 
network connectivity or between disease duration and normalized 
global efficiency. However, it was still difficult to exclude all the 
effects of treatment. All patients recruited were not naïve. Second, 
group ICA was conducted for the HC group but not for the HCs 
who were independent of three-group comparisons. However, 
intrinsic connectivity networks decomposed in the present study 
were consistent with those reported in other studies. Third, the static 
functional connectivity analysis in the present study, which averages 
over the entire acquisition time, is believed to overlook variable 
brain activity during the acquisition period [67, 68]. However, 
whether brain network properties are influenced by variations in the 
acquisition period remains unclear. In the future, we may compare 
features extracted by static functional connectivity and dynamic 
functional connectivity.
Conclusion
   We proposed a novel approach, resilience, to classify patients with 
SZ and BD as well as HCs. Classification of the two neuropsychiatric 
disorders using resilience analysis had higher accuracy for two main 
reasons. First, resilience analysis provides an approach to detect 
the topological structure of brain networks. Brain networks have 
distributions that are more heterogeneous than those of random
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networks because the topology of hub connectivity plays a crucial 
role in small-world networks and hierarchical organization. Second, 
the classification performance by global properties was superior to 
that by local ones, because patients with SZ and BD have distinct 
and shared network dysconnectivity and have heterogeneous 
presentations. The use of global change in brain network organization, 
such as global efficiency after a targeted attack, may result in more 
accurate classification than the use of local changes, such as region-
to-region functional connectivity. Consequently, network resilience 
may be a tool for classifying SZ and BD and may help their diagnosis 
in the future.
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